Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

 

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR

Zestaw użytkownika
nr 2920_4008

Zadanie 1

Oblicz prawdopodobieństwo tego, że przy czterokrotnym rzucie kostką, 3 kolejne wyniki utworzą ciąg geometryczny.

Zadanie 2

20 drużyn rozdziela się losowo na 2 grupy po 10 drużyn. Oblicz prawdopodobieństwo tego, że 2 ustalone drużyny znajdą się w różnych grupach.

Zadanie 3

Z urny, w której znajduje się 20 kul białych i 2 czarne losujemy n kul. Znajdź najmniejszą wartość n , taką przy której prawdopodobieństwo wylosowania przynajmniej jednej kuli czarnej jest większe od 12 .

Zadanie 4

Mamy 10 książek, wśród których są książki A ,B i C . Ustawiamy je losowo na pustej półce. Oblicz prawdopodobieństwo, że książki A i B będą stały obok siebie w dowolnym porządku, natomiast C nie będzie sąsiadować z żadną z nich.

Zadanie 5

Dany jest ciąg (an) o wyrazie ogólnym  -120- an = n+ 1 , dla każdej liczby naturalnej n ≥ 1 . Ze zbioru liczb {a1,a2,a3,...,a11} losujemy kolejno, trzy razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A – wylosujemy trzy liczby całkowite, które będą kolejnymi wyrazami ciągu malejącego.

Zadanie 6

Liczbę naturalną nazywamy palindromiczną, jeżeli nie zmienia się po zapisaniu jej cyfr w odwrotnej kolejności. Liczbami palindromicznymi są np. liczby 5, 33, 1123211. Liczby 10, 3230 nie są palindromiczne.

  • Oblicz prawdopodobieństwo, że losowo wybrana liczba siedmiocyfrowa jest liczbą palindromiczną.
  • Oblicz prawdopodobieństwo, że suma dwóch losowo wybranych liczb dwucyfrowych jest nieparzystą dwucyfrową liczbą palindromiczną.
Zadanie 7

Listonosz losowo rozmieszcza 7 listów w 5 różnych skrzynkach na listy. Oblicz prawdopodobieństwo, że w każdej skrzynce znajdzie się przynajmniej jeden list.

Zadanie 8

Sześcian, którego ściany zostały pomalowane czerwoną farbą, dzielimy 6 płaszczyznami równoległymi do jego ścian na 27 identycznych sześcianików. Losujemy 2 spośród nich.

  • Oblicz prawdopodobieństwo, że łączna liczba czerwonych ścian wylosowanych sześcianików wynosi 3.
  • Oblicz prawdopodobieństwo, że wylosowane sześcianiki mają wspólną ścianę.
Zadanie 9

W urnie znajduje się N losów, przy czym M z nich to losy wygrywające (M ≤ N ). Wybieramy losowo n losów z urny (n ≤ N ) i niech p oznacza prawdopodobieństwo, że dokładnie m spośród tych losów to losy wygrywające (m ≤ M oraz m ≤ n ). Uzasadnij, że

 (n )⋅(N −n ) p = -m---NM-−m--. (M )
Zadanie 10

Z szuflady, w której znajduje się 10 różnych par rękawiczek wybieramy losowo cztery rękawiczki. Opisz zbiór wszystkich zdarzeń elementarnych, a następnie oblicz prawdopodobieństwa zdarzeń:
A – wśród wylosowanych rękawiczek nie będzie pary,
B – wśród wylosowanych rękawiczek będzie dokładnie jedna para.

Zadanie 11

Ze zbioru 1,2,...,n losujemy kolejno bez zwracania 2 liczby k i l . Dla jakich wartości n prawdopodobieństwo tego, że |k− l| = 2 jest większe od 14 ?

Zadanie 12

Ze zbioru liczb {1,2 ,3 ,...,21} losujemy jednocześnie siedem liczb i ustawiamy je w kolejności rosnącej x1 < x2 < x 3 < ...< x 7 . Oblicz prawdopodobieństwo zdarzenia x2 ≤ 3 .

Zadanie 13

Ile jest liczb naturalnych czterocyfrowych, w których żadne dwie spośród cyfr: 1,3,5,7,9 nie sąsiadują ze sobą?

Zadanie 14

Ile jest liczb naturalnych ośmiocyfrowych, których suma cyfr jest równa 4?

Zadanie 15

Cyfry 0, 1, 2, 3, 4, 5, 6 ustawiamy losowo w liczbę siedmiocyfrową, której pierwsza cyfra nie jest równa 0. Ile jest możliwych ustawień, w których otrzymamy liczbę siedmiocyfrową

  • podzielną przez 4
  • parzystą.
Zadanie 16

W pewnym budynku biurowym przydzielono pracownikom pięciocyfrowe kody bezpieczeństwa, przy czym każdy kod musiał spełniać następujące dwa warunki:
(1) kod musi zawierać co najmniej 3 różne cyfry
(2) kod musi zawierać co najmniej jedną cyfrę parzystą i co najmniej jedną cyfrę nieparzystą.
Ile jest kodów spełniających powyższe warunki?

Zadanie 17

Ile jest liczb dziewięciocyfrowych, w których suma każdych trzech kolejnych cyfr jest równa 10?

Zadanie 18

Wyznacz liczbę n , wiedząc że  n n (3)− (2) = 14 .

Zadanie 19

Ile jest takich czwórek liczb całkowitych i dodatnich (a,b,c,d) , które spełniają równanie ab + bc + cd + da = 1004 .

Zadanie 20

Ze zbioru liczb {1,2,...,2n + 5} wybieramy jednocześnie dwie liczby (nie uwzględniamy kolejności). Na ile sposobów możemy to zrobić, tak aby otrzymać dwie liczby takie, że:

  • ich różnica będzie liczbą parzystą,
  • suma ich kwadratów będzie liczbą podzielną przez cztery?
Zadanie 21

Okrąg podzielono dwudziestoma punktami na dwadzieścia łuków tej samej długości. Ile można zbudować łamanych zamkniętych z wierzchołkami w tych punktach i z odcinkami równej długości? (Odcinki mogą się przecinać, ale nie mogą się pokrywać.)

Zadanie 22

Proste k,l,m są parami różne i równoległe. Na prostych tych wybrano zbiór S składający się z 3n punktów (n ≥ 3 ), przy czym na każdej z prostych wybrano n punktów. Wiadomo ponadto, że jeżeli trzy punkty zbioru S leżą na jednej prostej, to prostą tą jest k,l lub m . Oblicz ile jest trójkątów o wierzchołkach należących do zbioru S .

Arkusz Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniach jest błąd lub literówka?
Masz inny pomysł na rozwiązanie zadania?
Napisz nam o tym!

Numer zestawu jest wysyłany automatycznie.
Jeżeli oczekujesz odpowiedzi podaj adres e-mail.