Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Zadanie nr 7458316

Wyznacz równanie okręgu o środku S = (− 2,3) stycznego do prostej l o równaniu 3x + 4y + 14 = 0 .

Wersja PDF
Rozwiązanie

Ponieważ prosta l jest styczna do okręgu, więc odległość środka okręgu od prostej l będzie równa promieniowi tego okręgu. Liczymy

r = d(S ,l) = |3⋅(−-2√)-+-4-⋅3+--14| = 2-0 = 4. 32 + 42 5

Zatem okrąg ma równanie

(x + 2)2 + (y − 3)2 = 16.

Na koniec obrazek


PIC


 
Odpowiedź: (x + 2)2 + (y − 3)2 = 16

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!

Numer zadania jest wysyłany automatycznie.
Jeżeli oczekujesz odpowiedzi podaj adres e-mail.