Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR

Równania i nierówności wymierne

Równania wymierne Równanie wymierne to równanie, które można sprowadzić do postaci

P-(x)- Q (x) = 0 ,

gdzie P(x ) i Q(x ) to pewne wielomiany.

Oczywiście każde rozwiązanie powyższego równania musi spełniać równanie wielomianowe P(x ) = 0 (licznik musi być równy 0). Z tego punktu widzenia rozwiązywanie równań wymiernych sprowadza się do rozwiązywania równań wielomianowych.

Rozwiążmy równanie x2−-5x+6- x2+4 = 0 .
Od razu zajmujemy się licznikiem. Liczymy.

 2 x − 5x+ 6 = 0 Δ = 25 − 2 4 = 1 x = 2 ∨ x = 3.

Jest jednak jeden drobny, aczkolwiek bardzo istotny szczegół, liczba x0 dla której P(x0) = 0 może być jednocześnie zerem mianownika wyrażenia P(x) Q(x) . W takiej sytuacji nie jest to rozwiązanie wyjściowego równania (nie należy do jego dziedziny).

Łatwo sprawdzić, że liczba x = 2 jest miejscem zerowym licznika ułamka xx−3−28 , ale nie jest to rozwiązanie równania

x − 2 -3-----= 0 x − 8

bo dla x = 2 mianownik tego wyrażenia się zeruje.

Są dwa sposoby poradzenia sobie z problemem dziedziny równania wymiernego.
1. Pierwszy sposób to wyznaczenie na początku dziedziny równania. Musimy więc rozwiązać równanie wielomianowe Q (x) = 0 i jego pierwiastki wyrzucić z dziedziny równania. Przy takim podejściu rozwiązanie równania wymiernego PQ((xx)) = 0 wymaga rozwiązania dwóch równań wielomianowych: P(x ) = 0 oraz Q(x ) = 0 .

Rozwiążmy równanie  2 x-−xx3+-−82 .
Mianownik zeruje się tylko dla x = − 2 , więc dziedziną równania jest zbiór D = R ∖{ −2 } . Szukamy teraz miejsc zerowych licznika.

x2 + x− 2 = 0 Δ = 1 + 8 = 9 x = − 2 ∨ x = 1.

Pierwszy z pierwiastków nie należy do dziedziny równania.

2. Drugi sposób, który jest niezwykle wygodny w przypadku bardziej skomplikowanych mianowników, to sprawdzenie na koniec, czy otrzymane miejsca zerowe licznika nie są przypadkiem miejscami zerowymi mianownika. Przy takim podejściu nie musimy wyznaczać dziedziny równania.

Rozwiążmy równanie ----x2−-1----- x4−x 3+x 2−6x+5 = 0 .
W tym przykładzie wyznaczenie dziedziny równania byłoby niezwykle trudne, podczas gdy samo rozwiązanie równania jest bardzo proste: miejsca zerowe licznika to x = − 1 i x = 1 . Skoro jednak nie wyznaczyliśmy dziedziny, musimy sprawdzić, czy przypadkiem któraś z tych liczb nie jest miejscem zerowym mianownika. Liczymy

Q (− 1) = 1+ 1+ 1+ 6+ 5 = 14 Q (1) = 1− 1+ 1− 6+ 5 = 0.

Zatem jedynym rozwiązaniem równania jest x = − 1 .

Nierówności wymierne Sytuacja nierówności wymiernych jest odrobinę bardziej skomplikowana, bo tym razem musimy traktować znacznie poważniej mianownik ułamka (w przypadku równań w zasadzie nie miał on znaczenia, byle tylko był niezerowy). Rozpocznijmy od przypadku ostrej nierówności postaci P-(x) > 0 Q (x) lub -P(x) < 0 Q (x) . Sytuacja jest bardzo prosta, korzystając z równoważności

P (x) ------> 0 ⇐ ⇒ P(x )⋅Q (x) > 0 Q (x) P (x) ------< 0 ⇐ ⇒ P(x )⋅Q (x) < 0 . Q (x)

zamieniamy taką nierówność na nierówność wielomianową.

Wyjaśnijmy krótko sens tych równoważności. Kiedy ułamek P(x) Q(x) jest dodatni? – dokładnie wtedy, gdy licznik i mianownik są tego samego znaku (oba dodatnie lub oba ujemne). A kiedy iloczyn P(x )⋅Q (x) jest dodatni? – gdy się chwilę zastanowimy to dokładnie w takiej samej sytuacji: gdy liczby P (x) i Q (x) są tego samego znaku. Innymi słowy

Iloraz dwóch liczb ma taki sam znak jak ich iloczyn.

Zauważmy jeszcze dodatkową miłą cechę tych równoważności: nie musimy w ogóle przejmować się dziedziną wyjściowego wyrażenia P(x) Q(x) . Dlaczego? Ano dlatego, że wśród rozwiązań nierówności P(x) ⋅Q (x) > 0 (lub P (x)⋅ Q(x ) < 0 ) nie może być liczb dla których Q (x) = 0 (bo wtedy P (x)⋅ Q(x ) = 0 ), czyli wszystkie rozwiązania, które otrzymamy są poprawne.

Zbiór rozwiązań nierówności x−5- x+3 > 0 jest taki sam jak zbiór rozwiązań nierówności kwadratowej

(x − 5 )(x + 3) > 0.

Jest to więc zbiór (− ∞ ,− 3) ∪ (5,+ ∞ ) .

Rozwiążmy nierówność -(2x−-1)(x2−2)- (3−x)(x2+x +1) < 0 .
Dana nierówność jest równoważna nierówności

 2 2 (2x − 1)(x − 2)(3 − x)(x + x + 1 ) < 0 ( 1) √ -- √ -- − 2 x− -- (x− 2)(x+ 2)(x − 3)(x2 + x + 1) < 0 . 2

Ostatni czynnik jest zawsze dodatni, więc pozostaje nierówność

( 1) √ -- √ -- x− -- (x − 2)(x+ 2)(x − 3) > 0. 2

PIC Korzystając teraz z metody węża mamy

 √ -- ( 1 √ --) x ∈ (− ∞ ,− 2 )∪ -, 2 ∪ (3,+ ∞ ). 2

Słabe nierówności Pozostał nam przypadek słabych nierówności postaci -P(x) ≥ 0 Q (x) oraz P(x)≤ 0 Q(x) . Sytuacja jest podobna jak w przypadku ostrych nierówności: zamieniamy te nierówności na nierówności P (x)⋅ Q(x ) ≥ 0 oraz P(x) ⋅Q (x) ≤ 0 odpowiednio. Tym razem jest jednak mały haczyk: w otrzymanym zbiorze rozwiązań będą zawarte zera mianownika Q(x ) (bo nierówność jest słaba) i musimy te zera usunąć. Innymi słowy, w tym przypadku nie możemy zignorować dziedziny nierówności. W skrócie zapisujemy tę sytuację przy pomocy równoważności

-P(x)-≥ 0 ⇐ ⇒ (P(x) ⋅Q (x) ≥ 0 oraz Q (x) ⁄= 0) Q (x ) P(x) ------≤ 0 ⇐ ⇒ (P(x) ⋅Q (x) ≤ 0 oraz Q (x) ⁄= 0). Q (x )

Rozwiążmy nierówność 2−x- x−3 ≥ 0 .
Zamieniamy iloraz na iloczyn

(2 − x )(x− 3) ≥ 0 / ⋅(− 1) (x − 2)(x− 3) ≤ 0 x ∈ ⟨2,3⟩.

Z otrzymanego przedziału musimy jednak wyrzucić zero mianownika, czyli x = 3 . Odpowiedzią jest więc przedział ⟨2 ,3 ) .

Wersja PDF
Login Hasło
Nie chcesz się rejestrować ani opłacać abonamentu? Zapłać (telefonicznie) 3,92 zł, a otrzymasz dwudziestominutowy dostęp do wszystkich materiałów dostępnych w portalu.