Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Windą, zatrzymującą się na 6 piętrach, jadą 4 osoby. Jakie jest prawdopodobieństwo tego, że każda osoba wysiądzie na innym piętrze?

Na diagramie składającym się z 9 kwadratowych pól w układzie 3x3 zaznaczono w losowo wybranych polach kółko i krzyżyk. Jakie jest prawdopodobieństwo tego, że oba znaki znalazły się na sąsiednich polach tzn. stykających się jednym bokiem.

Ze zbioru punktów o współrzędnych (x,y ) , gdzie x ∈ {1 ,2 ,3} zaś y ∈ {2,4} wybrano losowo dwa różne punkty. Oblicz prawdopodobieństwa zdarzeń:

  • A – wylosowane punkty należą do prostej o równaniu y = 2x ;
  • B – wylosowane punkty są końcami odcinka równoległego do osi Ox .

Po przypadkowo wybranych równoległych do siebie torach czterotorowej linii kolejowej jadą naprzeciw siebie 2 drezyny. Oblicz prawdopodobieństwo ich zderzenia.

W pierwszej loterii jest n (n > 2) losów, spośród których jeden wygrywa, a w drugiej jest 2n losów, spośród których dwa wygrywają. Gracz chce kupić dwa losy w jednej z tych loterii. W której z nich ma większą szansę otrzymania co najmniej jednego losu wygrywającego?

Przedstawiono informacje dotyczące znajomości języka angielskiego oraz języka niemieckiego w pewnej 200 osobowej grupie studentów:
25% studentów zna język angielski i język niemiecki,
50% studentów zna język niemiecki,
60% zna język angielski.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrany z tej grupy student

  • zna język angielski i nie zna języka niemieckiego,
  • nie zna języka angielskiego i nie zna języka niemieckiego.

Spośród cyfr 1, 2, 3, 4, 5, 6 losujemy kolejno dwa razy po jednej cyfrze ze zwracaniem. Tworzymy liczbę dwucyfrową w ten sposób, że pierwsza z wylosowanych cyfr jest cyfrą dziesiątek, a druga cyfrą jedności tej liczby. Oblicz prawdopodobieństwo utworzenia liczby większej od 52.

Spośród liczb {1,2,...,200 } wybieramy losowo bez zwracania dwie liczby. Oblicz prawdopodobieństwa P (A) i P (A ∩ B ) , gdzie A i B są następującymi zdarzeniami:
A – druga z wylosowanych liczb jest mniejsza od 2;
B – różnica wylosowanych liczb jest podzielna przez 3.

Liczbę naturalną nazywamy palindromiczną, jeżeli nie zmienia się po zapisaniu jej cyfr w odwrotnej kolejności. Liczbami palindromicznymi są np. liczby 5, 33, 1123211. Liczby 10, 3230 nie są palindromiczne.

  • Oblicz prawdopodobieństwo, że losowo wybrana liczba siedmiocyfrowa jest liczbą palindromiczną.
  • Oblicz prawdopodobieństwo, że suma dwóch losowo wybranych liczb dwucyfrowych jest nieparzystą dwucyfrową liczbą palindromiczną.

Doświadczenie losowe polega na trzykrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w pierwszym rzucie otrzymamy parzystą liczbę oczek i iloczyn liczb oczek otrzymanych w trzech rzutach będzie podzielny przez 48.

Wykaż, że jeżeli A ,B są podzbiorami Ω oraz  4 3 P (A ) < 7,P(A ∩ B) > 8 , to P (A ∩ B ′) < 15 .

*Ukryj

Wykaż, że jeżeli A ,B są podzbiorami Ω oraz  5 4 P (B ) < 8,P (A ∩ B ) > 7 , to P (A ′ ∩ B) < 114- (A ′ oznacza zdarzenie przeciwne do A ).

Z dworca prowadzą dwa wyjścia: wyjście A na przystanek autobusowy oraz B na postój taksówek. Stwierdzono, że pasażer wychodzi wyjściem A z prawdopodobieństwem 30%, a wyjściem B z prawdopodobieństwem 70%. Losowo wybrano trzech pasażerów. Oblicz prawdopodobieństwo tego, że wszyscy wybiorą wyjście A .

*Ukryj

Z dworca prowadzą dwa wyjścia: wyjście A na przystanek autobusowy oraz B na postój taksówek. Stwierdzono, że pasażer wychodzi wyjściem A z prawdopodobieństwem 30%, a wyjściem B z prawdopodobieństwem 70%. Losowo wybrano trzech pasażerów. Oblicz prawdopodobieństwo tego, że wszyscy wybiorą to samo wyjście.

Z dworca prowadzą dwa wyjścia: wyjście A na przystanek autobusowy oraz B na postój taksówek. Stwierdzono, że pasażer wychodzi wyjściem A z prawdopodobieństwem 30%, a wyjściem B z prawdopodobieństwem 70%. Losowo wybrano trzech pasażerów. Oblicz prawdopodobieństwo tego, że jeden wybierze wyjście A , a pozostali dwaj, wyjście B .

Z dworca prowadzą dwa wyjścia: wyjście A na przystanek autobusowy oraz B na postój taksówek. Stwierdzono, że pasażer wychodzi wyjściem A z prawdopodobieństwem 30%, a wyjściem B z prawdopodobieństwem 70%. Losowo wybrano trzech pasażerów. Oblicz prawdopodobieństwo tego, że tylko dwaj z nich wybiorą to samo wyjście.

W dwunastu rzutach monetą cztery razy wypadł orzeł. Oblicz prawdopodobieństwo, że orzeł wypadł w piątym rzucie tej serii rzutów.

Rzucono trzema monetami 7 razy. Oblicz prawdopodobieństwo, że 4 razy wyrzucono 2 reszki.

Pewne doświadczenie polega na rzucie monetą i wylosowaniu jednej karty. Jeśli wypadnie reszka, to karta jest losowania z talii 52kart, a jeśli wypadnie orzeł, to kartę losujemy z talii, z której usunięto wszystkie figury. Oblicz jakie jest prawdopodobieństwo:

  • wylosowania króla;
  • wylosowania króla trefl;
  • wylosowania dwójki;
  • wylosowania dwójki pik.

Każdą krawędź sześcianu kolorujemy jednym z 6 kolorów, wśród których są kolory: biały i czarny. Oblicz prawdopodobieństwo, że wśród pokolorowanych krawędzi są dokładnie 3 krawędzie białe i 2 czarne. Wynik podaj w postaci ułamka nieskracalnego.

Co czwarta kula w urnie to biała, pozostałe mają kolor czarny lub niebieski. Losujemy jedna kulę. Prawdopodobieństwo wylosowania kuli niebieskiej lub białej jest dwukrotnie mniejsze niż prawdopodobieństwo wylosowania kuli niebieskiej lub czarnej. Oblicz prawdopodobieństwo wylosowania kuli czarnej.

Gracz rzuca dwa razy symetryczną sześcienną kostką do gry i oblicza iloczyn wyrzucanych oczek. Jeśli iloczyn ten jest liczbą podzielną przez 2 lub przez 3 to przegrywa. W pozostałych przypadkach wygrywa.

  • Uzupełnij tabelkę tak, aby przedstawiała wszystkie wyniki tego doświadczenia.
  • Podaj liczbę wynikow sprzyjających wygranej gracza i oblicz prawdopodobieństwo wygranej.

PIC

Z urny zawierającej 10 kul ponumerowanych kolejnymi liczbami od 1 do 10 losujemy jednocześnie trzy kule. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że numer jednej z wylosowanych kul jest równy sumie numerów dwóch pozostałych kul.

Piotrek ma 100 płyt CD z muzyką poważną. Codziennie słucha jednej płyty i odstawia ją na miejsce. Płyty wybiera w sposób losowy. Oblicz prawdopodobieństwo, że w ciągu pięciu kolejnych dni będzie słuchał codziennie tej samej płyty.

<<<<Strona 13 z 15>>>>