Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Wyznacz współrzędne wierzchołków trójkąta jeżeli środki jego boków mają współrzędne: P = (1,3),Q = (− 5,4),R = (− 6,7) .

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (− 2,− 4) oraz B = (− 5,2) . Jedno z jego ramion zawiera się w prostej o równaniu y = x − 2 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

*Ukryj

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (1,− 5) oraz B = (4,1) . Jedno z jego ramion zawiera się w prostej o równaniu y = −x − 4 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

Punkty A = (2,0) i B = (4,2) leżą na okręgu o równaniu  2 2 (x − 1) + (y − 3) = 10 . Wyznacz na tym okręgu taki punkt C , aby trójkąt ABC był trójkątem równoramiennym o podstawie AB .

Punkty A = (− 9,− 3) i B = (5,5) są wierzchołkami trójkąta prostokątnego ABC , w którym AB jest przeciwprostokątną. Wyznacz współrzędne wierzchołka C wiedząc, że leży on na osi Ox .

*Ukryj

Punkty A = (2,0) i B = (12,0) są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB . Wierzchołek C leży na prostej o równaniu y = x . Oblicz współrzędne punktu C .

Punkty A = (− 6,0) i B = (20,0) są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB . Wierzchołek C leży na prostej o równaniu y = x . Oblicz współrzędne punktu C .

Wierzchołki trójkąta ABC mają współrzędne: A = (− 6,4),B = (− 2,− 4),C = (3,1) . Napisz równanie okręgu, który jest styczny do prostej AC , a jego środek jest punktem przecięcia się wysokości trójkąta ABC .

Wierzchołkami trójkąta ABC są punkty A = (−4 ,1),B = (5,− 2),C = (3,6) . Oblicz długość środkowej AD .

Ostrokątny trójkąt równoramienny ABC o podstawie AB jest wpisany w okrąg o równaniu x2 + y2 = 25 . Punkty A i B leżą na prostej o równaniu y = x− 5 .

  • Oblicz współrzędne punktów: A ,B,C .
  • Oblicz kąty trójkąta ABC .

Przekształcenie P określone jest w następujący sposób: P (x,y) = (y + 2,x − 1) , gdzie x ,y ∈ R .

  • Wykaż, że przekształcenie P jest izometrią.
  • W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A (− 1,2) , B(2,− 4) , C(1,5 ) , a następnie znajdź jego obraz w przekształceniu P .
  • Wyznacz równanie prostej zawierającej wysokość trójkąta ABC poprowadzoną na bok AB .
  • Oblicz pole trójkąta  ′′ ′′ ′′ A B C , który jest obrazem trójkąta ABC w jednokładności o środku w punkcie (0,0) i skali k = −5 .

PIC

W trójkącie ABC , gdzie |AC | = 2|AB | dane są B = (− 6,6) i C = (− 10,− 9) . Wyznacz współrzędne wierzchołka A , jeżeli leży on na prostej 3y + x = 1 .

Punkty A = (0,4) i B = (6,0) są końcami odcinka AB . Prosta y = x przecina odcinek AB w punkcie C . Oblicz stosunek |AC| |CB| .

Punkty A = (− 1,2) i C = (2,28) są wierzchołkami trójkąta równoramiennego, w którym AC = BC . Prosta zawierająca wysokość opuszczoną z wierzchołka C ma równanie 2y + x = 58 . Oblicz pole trójkąta ABC .

Wierzchołkami kwadratu ABCD są punkty o współrzędnych A (0,0) , B (4,0) , C (4,4) i D (0,4) . Dla każdej liczby rzczywistej m ∈ (− 2,4) rozważamy trójkąt o wierzchołkach Pm (m ,0 ) , Sm (m + 2,0 ) i Rm (m,4) . Wyznacz wszystkie wartości prametru m , dla których pole figury, która jest częścią wspólną kwadratu ABCD i trójkąta PmSmRm wynosi 2.


PIC


Wyznacz równanie takiej prostej przechodzącej przez punkt A (− 4,6) , która wraz z osiami układu współrzędnych ogranicza trójkąt o polu równym 2.

W okrąg o równaniu  2 2 x + y − 12x − 8y + 32 = 0 wpisano trójkąt równoboczny ABC w którym A = (2;6 ) . Oblicz współrzędne pozostałych wierzchołków trójkąta.

Napisz równanie symetralnej boku AB trójkąta ABC o wierzchołkach A = (3,2),B = (10,2) i C = (5,8) .

Pole trójkąta ABC o danych wierzchołkach A = (1,− 2) oraz B = (2,3) jest równe 4,5. Wyznacz współrzędne trzeciego wierzchołka wiedząc, że należy on do prostej o równaniu x + y − 2 = 0 .

*Ukryj

Dane są punkty A = (− 1,3) i B = (− 4,2) . Wyznacz współrzędne punktu C na prostej y = −x + 5 tak, aby pole trójkąta ABC było równe 7.

Znajdź taki punkt C , leżący na prostej y = x − 1 , aby pole trójkąta ABC , którego wierzchołkami są punkty: C,A (2,1),B (5,2) było równe 5.

Dane są punkty  ( 1) A = 0 ,− 8 3 i  ( 1) B = 0 ,23 . Wyznacz na prostej k : y = 3x+ 13 punkt C , tak aby |AC | = |BC | . Dla wyznaczonego punktu C:

  • wykaż, że trójkąt ABC jest prostokątny;
  • wyznacz równanie okręgu opisanego na trójkącie ABC .

Oblicz pole i obwód trójkąta o wierzchołkach: A = (1,3), B = (4,0), C = (− 2,1) .

Wyznacz pole trójkąta, którego dwa boki zawierają się w asymptotach wykresu funkcji f(x) = 3xx−−24- , a trzeci bok zawiera się w stycznej do wykresu tej funkcji w punkcie (1 ,1) .

Dany jest wierzchołek trójkąta równobocznego C = (− 4,2) . Bok AB zawarty jest w prostej o równaniu 2x + 4y− 5 = 0 . Wyznacz długość boku tego trójkąta.

Strona 1 z 5>>>>