Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Naszkicuj wykres funkcji  |x|+-4 f (x) = x .

*Ukryj

Naszkicuj wykres funkcji  |x+4| f (x) = x .

Naszkicuj wykres funkcji  x+-4 f (x) = |x| .

Narysuj wykres funkcji f (x) = x|x − 2|+ x , gdzie x ∈ R i na jego podstawie odpowiedź na pytania.

  • Jaki jest zbiór wartości funkcji?
  • Dla jakich argumentów wartość funkcji wynosi 2?
  • W jakich przedziałach funkcja jest rosnąca?
  • Czy funkcja jest parzysta?

Narysuj wykres funkcji f określonej wzorem  2 f (x) = x − 4|x| i na jego podstawie wyznacz liczbę rozwiązań równania f (x) = m w zależności od wartości parametru m .

Wykresem funkcji kwadratowej  2 f(x ) = 2x + bx + c jest parabola, której wierzchołkiem jest punkt W = (4,0) . Oblicz wartości współczynników b i c .

*Ukryj

Wykresem funkcji kwadratowej  2 f(x) = − 2x + bx + c jest parabola, której wierzchołkiem jest punkt W = (− 3,1) . Oblicz wartości współczynników b i c .

Naszkicuj wykres funkcji  √ -2---------- f (x) = x − 2x + 1 − |x| .

Z danego wykresu funkcji f (x) odczytaj


PIC


  • zbiór wartości funkcji f (x) ;
  • rozwiązania równania f(x ) = 3 ;
  • maksymalne przedziały monotoniczności funkcji f (x) .
*Ukryj

Z danego wykresu funkcji f (x) odczytaj


PIC


  • zbiór wartości funkcji f (x) ;
  • rozwiązania równania f(x ) = − 3 ;
  • maksymalne przedziały, na których funkcja f (x) jest rosnąca.

Narysuj wykres funkcji  2 f (x) = |x(x + 1)|− x + x i odczytaj z niego ilość rozwiązań równania f (x) = m .

Sporządź wykres funkcji  −3x+1- f(x) = x+2 .

Dla jakich wartości parametru a istnieje b takie, że prosta y = ax + b przechodzi przez punkt P = (3,0) i przecina parabolę y = −x 2 + x+ 2 w dwóch punktach o dodatnich odciętych?

Funkcja liniowa f określona jest wzorem f(x) = ax + b dla x ∈ R .

  • Dla a = 20 08 i b = 20 09 zbadaj, czy do wykresu tej funkcji należy punkt P = (200 9,20092) .
  • Narysuj w układzie współrzędnych zbiór
     { } A = (x,y) : x ∈ ⟨− 1,3 ⟩ i y = − 1-x+ b i b ∈ ⟨− 2,1⟩ . 2

Funkcja f przyporządkowuje każdej liczbie naturalnej dodatniej liczbę jej dzielników będących liczbami pierwszymi. Np. f(1) = 0 , f(2 ) = 1, f (6) = 2 .

  • Naszkicuj wykres funkcji y = f (n) dla n ∈ {1,2,...,16} .
  • Podaj przykład liczby n , dla której f(n ) = 4 .
  • Uzasadnij, że równanie f(n ) = 2 ma nieskończenie wiele rozwiązań.

Narysuj wykresy funkcji f(x) = 2 |sin x| .

W prostokątnym układzie współrzędnych narysuj wykres funkcji

 3 2 f (x) = |x--−-x-| ⋅(x − 2)2. x3 − x2

Napisz równanie stycznej do wykresu funkcji  3 f(x ) = x w punkcie x0 = 1 .

*Ukryj

Dana jest parabola o równaniu  2 y = x + 1 i leżący na niej punkt A o współrzędnej x równej 3. Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = 2x − 3 i leżący na niej punkt A o współrzędnej x równej − 2 . Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = x + 1 i leżący na niej punkt A o współrzędnej x równej − 2 . Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = x + 1 i leżący na niej punkt A o współrzędnej x równej 2. Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = x + 1 i leżący na niej punkt A o współrzędnej x równej − 3 . Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = −x + 3 i leżący na niej punkt A o współrzędnej x równej 2. Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = −x + 2 i leżący na niej punkt A o współrzędnej x równej − 3 . Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = −x + 2 i leżący na niej punkt A o współrzędnej x równej 3. Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = −x + 3 i leżący na niej punkt A o współrzędnej x równej − 2 . Wyznacz równanie stycznej do tej paraboli w punkcie A .

Napisz równanie stycznej do wykresu funkcji  3 f(x) = x − 5 w punkcie x0 = 2 .

Napisz równanie stycznej do wykresu funkcji  3 f(x ) = x w punkcie x0 = − 1 .

Napisz równanie stycznej do wykresu funkcji  3 f(x) = x + 5 w punkcie x0 = − 2 .

Dana jest parabola o równaniu  2 y = 2x − 3 i leżący na niej punkt A o współrzędnej x równej 2. Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = 2x − 3 i leżący na niej punkt A o współrzędnej x równej − 1 . Wyznacz równanie stycznej do tej paraboli w punkcie A .

Dana jest parabola o równaniu  2 y = 2x − 3 i leżący na niej punkt A o współrzędnej x równej 1. Wyznacz równanie stycznej do tej paraboli w punkcie A .

Na rysunku przedstawiony jest wykres funkcji logarytmicznej opisanej wzorem f (x) = logp x .


PIC


  • Na podstawie tego wykresu wyznacz p .
  • Oblicz f(0,12 5) .
  • Sporządź wykres funkcji g (x) = |f(x − 4)| .
  • Podaj miejsce zerowe funkcji g .

Oblicz pole trójkąta ograniczonego osiami układu współrzędnych i styczną do paraboli f (x) = 9 − x2 w punkcie P = (2;5) .

Narysuj wykres funkcji f (x) = ||x+ 1|− 2| .

Wyznacz wzór funkcji liniowej o współczynniku kierunkowym 2 i przechodzącej przez punkt P = (− 2;3) .

Napisz wzór i naszkicuj wykres funkcji  ||g(m-)|| h (m) = |m+ 3| wiedząc, że funkcja y = g(m ) każdej liczbie rzeczywistej m przyporządkowuje najmniejszą wartość funkcji kwadratowej f(x) = −x 2 + 4x + 2m + 9 w przedziale ⟨− 1,3⟩ .

Wykres funkcji liniowej f przecina osie Ox i Oy układu współrzędnych odpowiednio w punktach P = (2,0) oraz Q = (0,4) .

  • Wyznacz wzór funkcji f .
  • Sprawdź, czy dla argumentu x = √-1-- 2− 1 wartość funkcji f wynosi  √ -- 2− 2 2 .
<<<<Strona 10 z 12>>>>