Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Spośród wierzchołków graniastosłupa sześciokątnego prostego losujemy jeden wierzchołek z dolnej podstawy i jeden wierzchołek z górnej podstawy. Oblicz prawdopodobieństwo tego, że wylosowane wierzchołki są końcami krawędzi bocznej graniastosłupa.


PIC


Wielokąt wypukły ma n wierzchołków, n ≥ 3 , n ∈ N , spośród których losujemy jednocześnie dwa. Wyznacz n , wiedząc, że prawdopodobieństwo wylosowania wierzchołków wyznaczających przekątną tego wielokąta jest mniejsze od 4 5 .

Z sześciu odcinków długości 1,3,5,6,7,9 wybieramy losowo trzy. Oblicz prawdopodobieństwo że można z nich zbudować trójkąt.

Losujemy dwa różne punkty spośród wierzchołków sześcianu o boku długości 1. Jakie jest prawdopodobieństwo, że

  • odległość wylosowanych wierzchołków jest równa 1?
  • odległość wylosowanych wierzchołków jest większa od 3 2 ?

Umieszczamy króla szachowego w lewym dolnym rogu 64-polowej szachownicy, a następnie siedem razy przesuwamy go losowo w górę lub w prawo (za każdym razem na nowo losujemy kierunek przesunięcia).


PIC


Zakładając, że wylosowanie każdego kierunku jest jednakowo prawdopodobne, oblicz prawdopodobieństwo, że na końcu król nie znajdzie się w rogu szachownicy.

Jakie jest prawdopodobieństwo tego, że losowo wybrane 4 różne wierzchołki sześcianu są wierzchołkami czworościanu foremnego?

Rozważmy zbiór wszystkich czteroelementowych podzbiorów zbioru wierzchołków pewnego prostopadłościanu. Oblicz prawdopodobieństwo wylosowania takiego podzbioru, którego elementy są wierzchołkami prostokąta.

Sześcian pomalowano, a następnie rozcięto na 1000 jednakowych sześcianików, które wrzucono do pudełka i wymieszano. Oblicz prawdopodobieństwo wylosowania z tego pudełka jednego, który:

  • będzie miał dwie ściany pomalowane;
  • będzie miał trzy ściany pomalowane;
  • będzie miał jedną lub dwie ściany pomalowane.

Każda ściana dwudziestościanu foremnego W jest trójkątem równobocznym, a z każdego wierzchołka tej bryły wychodzi 5 krawędzi. Wybieramy losowo dwa różne wierzchołki wielościanu W . Jakie jest prawdopodobieństwo tego, że odcinek łączący te dwa wierzchołki nie jest krawędzią wielościanu W ?


PIC


Oblicz prawdopodobieństwo tego, że dwa losowo wybrane wierzchołki sześciokąta foremnego o boku długości 1, są końcami odcinka o długości √ -- 3 .

Na diagramie składającym się z 9 kwadratowych pól w układzie 3x3 zaznaczono w losowo wybranych polach kółko i krzyżyk. Jakie jest prawdopodobieństwo tego, że oba znaki znalazły się na sąsiednich polach tzn. stykających się jednym bokiem.

Ze zbioru punktów o współrzędnych (x,y ) , gdzie x ∈ {1 ,2 ,3} zaś y ∈ {2,4} wybrano losowo dwa różne punkty. Oblicz prawdopodobieństwa zdarzeń:

  • A – wylosowane punkty należą do prostej o równaniu y = 2x ;
  • B – wylosowane punkty są końcami odcinka równoległego do osi Ox .

Każdą krawędź sześcianu kolorujemy jednym z 6 kolorów, wśród których są kolory: biały i czarny. Oblicz prawdopodobieństwo, że wśród pokolorowanych krawędzi są dokładnie 3 krawędzie białe i 2 czarne. Wynik podaj w postaci ułamka nieskracalnego.

Sześcian, którego ściany zostały pomalowane czerwoną farbą, dzielimy 6 płaszczyznami równoległymi do jego ścian na 27 identycznych sześcianików. Losujemy 2 spośród nich.

  • Oblicz prawdopodobieństwo, że łączna liczba czerwonych ścian wylosowanych sześcianików wynosi 3.
  • Oblicz prawdopodobieństwo, że wylosowane sześcianiki mają wspólną ścianę.