Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Zadanie nr 1485852

Punkty P ,Q ,R ,S są środkami odpowiednio krawędzi AD ,CD ,BC ,AB czworościanu ABCD . Wykaż, że punkty P ,Q,R i S są wierzchołkami równoległoboku.

Wersja PDF
Rozwiązanie

Rozpoczynamy oczywiście od rysunku.


PIC


Zauważmy, że odcinek P Q łączy środki boków w trójkącie ACD , czyli jest równoległy do krawędzi AC i P Q = AC2- . Analogicznie, odcinek SR łączy środki boków w trójkącie ABC , czyli jest równoległy do AC i  AC- SR = 2 . W takim razie odcinki PQ i SR mają równe długości i są równoległe (bo oba są równoległe do AC ), czyli czworokąt P QRS jest równoległobokiem.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!

Numer zadania jest wysyłany automatycznie.
Jeżeli oczekujesz odpowiedzi podaj adres e-mail.