Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Rozwiąż nierówność x4+-2x3+x-2 x− 1+ 6x2 < 0 .

*Ukryj

Rozwiąż nierówność x4−-4x3+-4x2 6x2− 1−x < 0 .

Po rozwinięciu powierzchni bocznej walca na płaszczyźnie otrzymano kwadrat o boku 6π . Objętość tego walca jest równa
A) 27π 2 B) 54π 2 C) 27 π D) 54π

*Ukryj

Po rozwinięciu powierzchni bocznej walca na płaszczyźnie otrzymano kwadrat o boku 8π . Objętość tego walca jest równa
A) 128 π B) 64 π C) 64 π2 D) 128π 2

Powierzchnia boczna walca po rozwinięciu jest kwadratem o polu  2 16π . Objętość tego walca jest równa
A) 4π 3 B) 4π 2 C) 16 π D) 16π 2

Wyznacz współrzędne wierzchołków trójkąta jeżeli środki jego boków mają współrzędne: P = (1,3),Q = (− 5,4),R = (− 6,7) .

Suma drugiego, czwartego i szóstego wyrazu ciągu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego i trzeciego jest równa 185. Wyznacz pierwszy wyraz i różnicę tego ciągu.

W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy pod kątem 6 0∘ . Oblicz objętość tego ostrosłupa.

Średnia arytmetyczna zestawu danych: 3, 8, 3, 11, 3, 10, 3, x jest równa 6. Mediana tego zestawu jest równa
A) 5 B) 6 C) 7 D) 8

*Ukryj

Średnia arytmetyczna liczb: x , 13, 7, 5, 5, 3, 2, 11 jest równa 7. Mediana tego zestawu liczb jest równa
A) 6 B) 7 C) 10 D) 5

Średnia arytmetyczna zestawu danych: 4, 5, 3, 8, 10, 4, 8, 9, 6, x jest równa 6,5. Mediana tego zestawu jest równa
A) 5 B) 6 C) 7 D) 8

Średnia arytmetyczna liczb: 3, 1, 6, 5, 2, 4, x , 2, 3, 8 wynosi 4. Medianą tego zbioru liczb jest
A) 3,5 B) 3 C) 4,5 D) 4

Średnia arytmetyczna sześciu liczb naturalnych: 31, 16, 25, 29, 27, x , jest równa x2 . Mediana tych liczb jest równa
A) 26 B) 27 C) 28 D) 29

Średnia arytmetyczna sześciu liczb naturalnych: 21, 14, 19, 15, 24, x , jest równa x3 . Mediana tych liczb jest równa
A) 17 B) 20 C) 19 D) 21

Oceń, czy liczba |3,14− π| + |π − 3,14 | jest wymierna, czy niewymierna.

Ze zbioru wszystkich liczb naturalnych trzycyfrowych losujemy kolejno trzy razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 304.

W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm. Oblicz pole tego trójkąta.

Określ liczbę pierwiastków równania  2 (m + 1 )x + (m + 1)x + 1 = 0 w zależności od wartości parametru m , a następnie naszkicuj wykres funkcji:

 ( |{ x1 + x2 gdy dane równanie ma dwa pierwiastki x1 i x2, f(m ) = |( 2x0 gdy dane równanie ma jeden pierwiastek x 0, 3− m gdy dane równanie nie ma pierwiastków .

Dziedziną funkcji  --x−1---- f(x) = 3√x2+x−-6 jest zbiór
A) R ∖ {− 3,2 } B) (− ∞ ,− 3)∪ (2,+ ∞ ) C) (− 3,2) D) (− ∞ ,− 2) ∪ (3,+ ∞ )

Miara kąta α jest równa:


PIC


A) 1 8∘ B) 15∘ C) 90 ∘ D) 30∘

*Ukryj

Miara kąta α jest równa:


PIC


A) 1 8∘ B) 15∘ C) 90 ∘ D) 30∘

Liczby m ≥ 1 i n ≥ 1 spełniają warunek m-+1 -5m-- n = 2n+ 1 . Wtedy liczba n jest równa
A) 3mm++12 B) 3mm+−12 C) -m+-1 7m −2 D) m-+1- 7m+ 2

*Ukryj

Wiadomo, że liczba  1+y- x = 1−y dla y ⁄= 1 . Zatem
A) y = 1−x- x+1 B) y = x+-1 x− 1 C)  x−1- y = x+1 D)  x−-1 y = 1−x

Wiadomo, że liczba  b−2- a = 1−b dla b ⁄= 1 . Zatem
A) b = aa−+21- B) b = aa++21- C)  a+-2- b = a− 1 D)  a−2- b = a−1

Na rysunku przedstawiony jest wykres funkcji f określonej wzorem f (x) = 3x dla x ⁄= 0 .


PIC


Wykres ten przesunięto o 2 jednostki w górę wzdłuż osi Oy . Otrzymano w ten sposób wykres funkcji g o wzorze g(x) = 3x + 2 dla x ⁄= 0 .

  • Narysuj wykres funkcji g .
  • Oblicz największą wartość funkcji g w przedziale ⟨21,31⟩ .
  • Podaj, o ile jednostek wzdłuż osi Ox należy przesunąć wykres funkcji g , aby otrzymać wykres funkcji przechodzący przez początek układu współrzędnych.

Przeciwprostokątna trójkąta prostokątnego o obwodzie 40 ma długość 17. Oblicz długości przyprostokątnych tego trójkąta.

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 2, a krawędź boczna długość 6.

*Ukryj

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 4, a krawędź boczna długość 10.

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź boczna ma długość 8, a krawędź podstawy ma długość 2.

Dany jest wielomian  3 W (x) = x + 4x + p , gdzie p > 0 jest liczbą pierwszą. Znajdź p wiedząc, że W (x) ma pierwiastek całkowity.

Odcinek CD jest wysokością trójkąta ABC , w którym  1 |AD | = |CD | = 2|BC | (zobacz rysunek). Okrąg o środku C i promieniu CD jest styczny do prostej AB . Okrąg ten przecina boki AC i BC trójkąta odpowiednio w punktach K i L .


PIC


Zaznaczony na rysunku kąt α wpisany w okrąg jest równy
A) 37,5∘ B) 45∘ C) 52 ,5 ∘ D) 60∘

Dana jest funkcja y = − 4x+ 2 . Napisz wzór funkcji otrzymanej po przesunięciu danej funkcji o wektor → v = [2,0] . Narysuj oba wykresy.

*Ukryj

Dana jest funkcja y = 2x − 5 . Napisz wzór funkcji otrzymanej po przesunięciu danej funkcji o wektor → v = [− 3,4] . Narysuj oba wykresy.

Dana jest funkcja  1 y = − 2x + 2 . Napisz wzór funkcji otrzymanej po przesunięciu danej funkcji o wektor →u = [− 1,4] . Narysuj oba wykresy.

Dana jest funkcja y = 3x + 4 . Napisz wzór funkcji otrzymanej po przesunięciu danej funkcji o wektor → v = [0,− 3] . Narysuj oba wykresy.

Rozwiązaniem równania  2 (x − 1)(2x − 1)x = 0 nie jest liczba
A) log 51 B) lo g39 C)  √ -- log 2 2 D) log 2 0,5

*Ukryj

Rozwiązaniem równania  2 (x − 4)(3x − 1 )(x+ 1) = 0 nie jest liczba
A) log 50,2 B) lo g24 C) log √33- 3 D) log 16 0,5

Strona 1 z 341>>>>