Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy pod kątem 6 0∘ . Oblicz objętość tego ostrosłupa.

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 2, a krawędź boczna długość 6.

*Ukryj

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 4, a krawędź boczna długość 10.

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź boczna ma długość 8, a krawędź podstawy ma długość 2.

W ostrosłupie prawidłowym czworokątnym ABCDS o podstawie ABCD wysokość jest równa 5, a kąt między sąsiednimi ścianami bocznymi ostrosłupa ma miarę 1 20∘ . Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt ABC . Kąt nachylenia krawędzi bocznej AS do płaszczyzny podstawy ostrosłupa jest równy kątowi między krawędziami bocznymi AS i BS zawartymi w ścianie bocznej ASB tego ostrosłupa (zob. rysunek). Oblicz kosinus tego kąta.


PIC


Podstawą graniastosłupa jest trójkąt prostokątny, w którym przeciwprostokątna ma długość 8 cm, a jeden z kątów ma miarę 30∘ . Powierzchnia boczna tego graniastosłupa po rozwinięciu na płaszczyznę jest kwadratem. Oblicz pole powierzchni całkowitej i objętość tego graniastosłupa.

Podstawą graniastosłupa prawidłowego jest trójkąt, w którym długość wysokości wynosi  √ -- 6 3 cm . Przekątne ścian bocznych wychodzące z jednego wierzchołka tworzą kąt o mierze 50∘ . Oblicz pole powierzchni całkowitej i objętość graniastosłupa. Wynik podaj z dokładnością do 1 cm.

W graniastosłupie prawidłowym czworokątnym ABCDEF GH połączono punkty będące środkami krawędzi BC , CD , AD i GH . Wyznacz objętość powstałej bryły wiedząc, że  √ -- |DB | = 5 2 i kąt DBH ma miarę 6 0∘ .


PIC


Objętość ostrosłupa prawidłowego czworokątnego ABCDS o podstawie ABCD jest równa 224, a promień okręgu opisanego na podstawie ABCD jest równy  √ --- 2 14 . Oblicz cosinus kąta między wysokością tego ostrosłupa i jego ścianą boczną.

Z papierowego koła o promieniu R wycięto wycinek kołowy, który jest powierzchnią boczną stożka o maksymalnej objętości. Jaka była miara kąta środkowego α wyciętego wycinka? Wynik podaj w radianach.


PIC


Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . Pole trójkąta ASC jest równe 120, a cosinus kąta ASB jest równy 141649- . Oblicz pole powierzchni bocznej tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym długość krawędzi podstawy jest równa a i jest 4 razy większa niż odległość środka podstawy od ściany bocznej. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCD jest trójkąt ABC . Krawędź AD jest wysokością ostrosłupa (zobacz rysunek).


PIC


Oblicz objętość ostrosłupa ABCD , jeśli wiadomo, że |AD | = 12, |BC | = 6,|BD | = |CD | = 13 .

*Ukryj

Podstawą ostrosłupa ABCD jest trójkąt ABC . Krawędź AD jest wysokością ostrosłupa (zobacz rysunek).


PIC


Oblicz objętość ostrosłupa ABCD , jeśli wiadomo, że |AD | = 24,|BC | = 12,|BD | = |CD | = 26 .

Podstawą graniastosłupa jest trójkąt prostokątny równoramienny o ramieniu długości 9. Kąt między przekątną największej ściany bocznej i wysokością graniastosłupa jest równy 60∘ . Oblicz pole powierzchni bocznej i objętość tego graniastosłupa.

*Ukryj

Podstawą graniastosłupa jest trójkąt prostokątny równoramienny o ramieniu długości 6. Kąt między przekątną największej ściany bocznej i wysokością graniastosłupa jest równy 60∘ . Oblicz pole powierzchni bocznej i objętość tego graniastosłupa.

W kulę o promieniu długości R wpisano walec o największej objętości. Wyznacz stosunek objętości kuli do objętości tego walca.

*Ukryj

W kulę o promieniu długości R wpisano stożek o maksymalnej objętości. Oblicz objętość tego stożka.

Podstawą ostrosłupa ABCDS jest prostokąt ABCD o bokach długości |AB | = 7 i |BC | = 14 . Krawędź CS jest prostopadła do podstawy. Najdłuższa krawędź boczna tworzy z podstawą kąt 50∘ . Wykonaj rysunek pomocniczy tego ostrosłupa oraz oblicz jego objętość.

Trójkąt prostokątny o przyprostokątnych długości 12 i 7 obraca się wokół przeciwprostokątnej. Oblicz promień kuli wpisanej w otrzymaną bryłę.

Prostokąt ABCD obracając się wokół boku AB , zakreślił walec w 1 . Ten sam prostokąt obracając się wokół boku AD , zakreślił walec w2 . Otrzymane walce mają równe pola powierzchni całkowitych. Wykaż, że prostokąt ABCD jest kwadratem.

Wysokość podstawy graniastosłupa prawidłowego trójkątnego ma długość  √ -- 4 3 , zaś przekątna ściany bocznej tworzy z krawędzią podstawy kąt równy π- 3 . Graniastosłup ten wpisano w walec. Oblicz pole powierzchni i objętość walca.

Pole powierzchni bocznej stożka jest cztery razy większe od pola podstawy. Obwód przekroju osiowego stożka jest równy 30. Oblicz objętość tego stożka

Wysokość ostrosłupa prawidłowego czworokątnego jest 2 razy dłuższa od krawędzi jego podstawy. Przez przekątną podstawy i środek rozłącznej z nią krawędzi bocznej poprowadzono płaszczyznę. Oblicz pole otrzymanego przekroju, wiedząc, że krawędź podstawy ostrosłupa ma długość a .

*Ukryj

Wysokość ostrosłupa prawidłowego czworokątnego jest 2,5 razy dłuższa od krawędzi jego podstawy. Przez przekątną podstawy i środek rozłącznej z nią krawędzi bocznej poprowadzono płaszczyznę. Oblicz pole otrzymanego przekroju, wiedząc, że krawędź podstawy ostrosłupa ma długość a .

Strona 1 z 21>>>>