Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

W trójkącie ABC , gdzie |AC | = 2|AB | dane są B = (− 6,6) i C = (− 10,− 9) . Wyznacz współrzędne wierzchołka A , jeżeli leży on na prostej 3y + x = 1 .

Punkty A = (0,4) i B = (6,0) są końcami odcinka AB . Prosta y = x przecina odcinek AB w punkcie C . Oblicz stosunek |AC| |CB| .

Punkty A = (− 1,2) i C = (2,28) są wierzchołkami trójkąta równoramiennego, w którym AC = BC . Prosta zawierająca wysokość opuszczoną z wierzchołka C ma równanie 2y + x = 58 . Oblicz pole trójkąta ABC .

Wierzchołkami kwadratu ABCD są punkty o współrzędnych A (0,0) , B (4,0) , C (4,4) i D (0,4) . Dla każdej liczby rzczywistej m ∈ (− 2,4) rozważamy trójkąt o wierzchołkach Pm (m ,0 ) , Sm (m + 2,0 ) i Rm (m,4) . Wyznacz wszystkie wartości prametru m , dla których pole figury, która jest częścią wspólną kwadratu ABCD i trójkąta PmSmRm wynosi 2.


PIC


Wyznacz równanie takiej prostej przechodzącej przez punkt A (− 4,6) , która wraz z osiami układu współrzędnych ogranicza trójkąt o polu równym 2.

W okrąg o równaniu  2 2 x + y − 12x − 8y + 32 = 0 wpisano trójkąt równoboczny ABC w którym A = (2;6 ) . Oblicz współrzędne pozostałych wierzchołków trójkąta.

Napisz równanie symetralnej boku AB trójkąta ABC o wierzchołkach A = (3,2),B = (10,2) i C = (5,8) .

Dane są proste o równaniach y = x + 2 oraz y = −3x + b , które przecinają się w punkcie leżącym na osi Oy układu współrzędnych. Oblicz pole trójkąta, którego dwa boki zawierają się w danych prostych, a trzeci jest zawarty w osi Ox .

*Ukryj

Oblicz pole trójkąta ABC , którego boki zawierają się w prostych o równaniach: y = 0 , y = − 12x+ 4 oraz y = 45x + 4 .

Oblicz pole trójkąta ABC , którego boki zawierają się w prostych o równaniach: y = 0 , y = − 35x− 3 oraz y = 13x − 3 .

Dane są proste o równaniach y = −x + 2 oraz y = 3x + b , które przecinają się w punkcie leżącym na osi Oy układu współrzędnych. Oblicz pole trójkąta, którego dwa boki zawierają się w danych prostych, a trzeci jest zawarty w osi Ox .

Dane są proste o równaniach y = −x + 2b− 4 oraz  1 y = 4x − b , które przecinają się w punkcie leżącym na osi Ox układu współrzędnych. Oblicz pole trójkąta, którego dwa boki zawierają się w danych prostych, a trzeci jest zawarty w osi Oy .

Pole trójkąta ABC o danych wierzchołkach A = (1,− 2) oraz B = (2,3) jest równe 4,5. Wyznacz współrzędne trzeciego wierzchołka wiedząc, że należy on do prostej o równaniu x + y − 2 = 0 .

*Ukryj

Dane są punkty A = (− 1,3) i B = (− 4,2) . Wyznacz współrzędne punktu C na prostej y = −x + 5 tak, aby pole trójkąta ABC było równe 7.

Znajdź taki punkt C , leżący na prostej y = x − 1 , aby pole trójkąta ABC , którego wierzchołkami są punkty: C,A (2,1),B (5,2) było równe 5.

Dane są punkty  ( 1) A = 0 ,− 8 3 i  ( 1) B = 0 ,23 . Wyznacz na prostej k : y = 3x+ 13 punkt C , tak aby |AC | = |BC | . Dla wyznaczonego punktu C:

  • wykaż, że trójkąt ABC jest prostokątny;
  • wyznacz równanie okręgu opisanego na trójkącie ABC .

Oblicz pole i obwód trójkąta o wierzchołkach: A = (1,3), B = (4,0), C = (− 2,1) .

Boki AB i CA trójkąta ABC są zawarte w prostych y + 12 = 7x i 2y + x = 6 , a jego dwa wierzchołki mają współrzędne B = (1,− 5) i C = (10,− 2) . Oblicz pole tego trójkąta.

Dane są punkty A = (− 4,0) i M = (2 ,9) oraz prosta k o równaniu y = − 2x+ 10 . Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM . Oblicz pole trójkąta ABC .

Dany jest wierzchołek trójkąta równobocznego C = (− 4,2) . Bok AB zawarty jest w prostej o równaniu 2x + 4y− 5 = 0 . Wyznacz długość boku tego trójkąta.

Punkt  (5 3 √ -) E = 2,− 2 3 jest środkiem boku AB trójkąta równobocznego ABC , a boki AC i BC tego trójkąta są zawarte odpowiednio w prostych o równaniach x = 1 i  √3- √3- y = − 3 x + 3 . Wyznacz współrzędne wierzchołków tego trójkąta.

Środek okręgu o równaniu  2 2 x + y − 8x = 0 i punkt P (1 ,4) należą do prostej l , która przecina okrąg w punktach A i B . Oblicz pole trójkąta ABO gdzie O to początek układu współrzędnych.

Podstawa AB trójkąta równobocznego ABC zawarta jest w prostej y = 34x + 1 , a wierzchołek C = (− 1,4) . Wyznacz współrzędne wierzchołków A ,B tego trójkąta.

Wierzchołki trójkąta równobocznego ABC są punktami paraboli  2 y = −x + 6x . Punkt C jest jej wierzchołkiem, a bok AB jest równoległy do osi Ox . Sporządź rysunek w układzie współrzędnych i wyznacz współrzędne wierzchołków tego trójkąta.

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | oraz B = (0,− 3) i C = (2,3) . Oś symetrii tego trójkąta ma równanie y − x − 1 = 0 . Oblicz współrzędne wierzchołka A .

*Ukryj

Punkty A = (− 2,− 8) i B = (14,− 8) są wierzchołkami trójkąta równoramiennego ABC , w którym |AB | = |AC | . Wysokość AD tego trójkąta jest zawarta w prostej o równaniu y = 12x − 7 . Oblicz współrzędne wierzchołka C tego trójkąta.

W trójkąt równoboczny ABC wpisano okrąg o środku w punkcie S = (3,− 1) . Wiedząc, że wierzchołek C ma współrzędne (1,− 3) wyznacz współrzędne pozostałych wierzchołków tego trójkąta.

Strona 1 z 6>>>>