Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności:

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo dwukrotnego otrzymania liczby oczek różnej od 5 jest równe
A) 16 B) 518 C) 3356 D) 25 36

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania sumy oczek równej trzy wynosi
A) 16 B) 19 C) 112 D) -1 18

*Ukryj

Rzucamy dwa razy sześcienną kostką do gry. Prawdopodobieństwo wyrzucenia w obu rzutach liczby oczek podzielnej przez 3 jest równe
A) -1 12 B) 1 9 C) -5 36 D) 5 9

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania sumy oczek równej cztery wynosi
A) 16 B) 19 C) 112 D) -1 18

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy sumę oczek równą 6, wynosi
A) 14 B) 19 C) 336 D) -5 36

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy sumę oczek równą 7, wynosi
A) 16 B) 19 C) 112 D) -1 18

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy iloczyn oczek równy 6, wynosi
A) 14 B) 19 C) 112 D) -1 18

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Niech p oznacza prawdopodobieństwo zdarzenia, że iloczyn liczb wyrzuconych oczek jest równy 5. Wtedy
A) p = 1- 36 B) p = 1- 18 C)  1- p = 12 D)  1 p = 9

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo dwukrotnego otrzymania pięciu oczek jest równe
A) 16 B) 112 C) 118 D) -1 36

Prawdopodobieństwo zdarzenia, że w rzucie dwiema symetrycznymi kostkami do gry otrzymamy iloczyn oczek równy 4, wynosi
A) 14 B) 19 C) 112 D) -1 18

Rzucamy dwiema kostkami do gry. Jeśli A oznacza zdarzenie „suma wyrzuconych oczek jest równa 11”, a B oznacza zdarzenie „suma wyrzuconych oczek jest równa 9” to
A) P (A) = P(B ) B) P(A ) > P (B ) C) P (A) < P (B) D) P (A) = 2P(B )

*Ukryj

Rzucamy dwiema kostkami do gry. Jeśli A oznacza zdarzenie „suma wyrzuconych oczek jest równa 10”, a B oznacza zdarzenie „suma wyrzuconych oczek jest równa 11” to
A) P (A) = P(B ) B) P(A ) > P (B ) C) P (A) < P (B) D) P (A) = 2P(B )

Rzucamy dwiema kostkami do gry. Jeśli A oznacza zdarzenie „suma wyrzuconych oczek jest równa 6”, a B oznacza zdarzenie „suma wyrzuconych oczek jest równa 10” to
A) P (A) = P(B ) B) P(A ) > P (B ) C) P (A) < P (B) D) P (A) = 2P(B )

Rzucamy dwiema sześciennymi kostkami do gry. Prawdopodobieństwo tego, że suma wyrzuconych oczek wyniesie co najwyżej 9, jest równe
A) 1366 B) 3036- C) 1356 D) -5 36

*Ukryj

Rzucamy dwiema sześciennymi kostkami do gry. Prawdopodobieństwo tego, że suma wyrzuconych oczek wyniesie co najwyżej 10, jest równe
A) 3336 B) 3236- C) 1356 D) -3 36

Rzucamy dwiema sześciennymi kostkami do gry. Prawdopodobieństwo tego, że suma wyrzuconych oczek wyniesie co najmniej 5, jest równe
A) 49 B) 512 C) 56 D) -5 36

Rzucamy dwukrotnie sześcienną kostką do gry. Prawdopodobieństwo zdarzenia, że na każdej kostce wypadną co najmniej 4 oczka, jest równe
A) 376 B) 29 C) 14 D) -5 18

*Ukryj

Rzucamy dwukrotnie sześcienną kostką do gry. Prawdopodobieństwo zdarzenia, że na każdej kostce wypadną co najwyżej 3 oczka, jest równe
A) 376 B) 14 C) 29 D) -5 18

Rzucamy dwukrotnie sześcienną kostką do gry. Prawdopodobieństwo zdarzenia, że na każdej kostce wypadnie co najmniej 5 oczek, jest równe
A) 356 B) 19 C) 14 D) -1 12

Rzucamy sześć razy symetryczną sześcienną kostką do gry. Niech pi oznacza prawdopodobieństwo wyrzucenia i oczek w i -tym rzucie. Wtedy
A) p = 1 6 B) p = 1 6 6 C) p 3 = 0 D)  1 p 3 = 3

Rzucamy dwa razy sześcienną kostką do gry. Prawdopodobieństwo wyrzucenia co najmniej raz liczby oczek podzielnej przez 3 jest równe
A) 19 36 B) 2 3 C) 1 2 D) 5 9

*Ukryj

Rzucamy dwa razy sześcienną kostką do gry. Prawdopodobieństwo wyrzucenia co najmniej raz liczby oczek większej od 4 jest równe
A) 1396 B) 59 C) 12 D) 2 3

Rzucamy dwa razy sześcienną kostką do gry. Prawdopodobieństwo otrzymania co najmniej raz pięciu oczek jest równe
A) 1316 B) 3536- C) 13 D) 2 3