Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 2, a krawędź boczna długość 6.

*Ukryj

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 4, a krawędź boczna długość 10.

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt ABC . Kąt nachylenia krawędzi bocznej AS do płaszczyzny podstawy ostrosłupa jest równy kątowi między krawędziami bocznymi AS i BS zawartymi w ścianie bocznej ASB tego ostrosłupa (zob. rysunek). Oblicz kosinus tego kąta.


PIC


Podstawą graniastosłupa jest trójkąt prostokątny, w którym przeciwprostokątna ma długość 8 cm, a jeden z kątów ma miarę 30∘ . Powierzchnia boczna tego graniastosłupa po rozwinięciu na płaszczyznę jest kwadratem. Oblicz pole powierzchni całkowitej i objętość tego graniastosłupa.

Podstawą graniastosłupa prawidłowego jest trójkąt, w którym długość wysokości wynosi  √ -- 6 3cm . Przekątne ścian bocznych wychodzące z jednego wierzchołka tworzą kąt o mierze 50∘ . Oblicz pole powierzchni całkowitej i objętość graniastosłupa. Wynik podaj z dokładnością do 1cm.

Objętość ostrosłupa prawidłowego czworokątnego ABCDS o podstawie ABCD jest równa 224, a promień okręgu opisanego na podstawie ABCD jest równy  √ --- 2 14 . Oblicz cosinus kąta między wysokością tego ostrosłupa i jego ścianą boczną.

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . Pole trójkąta ASC jest równe 120, a cosinus kąta ASB jest równy 141649- . Oblicz pole powierzchni bocznej tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym długość krawędzi podstawy jest równa a i jest 4 razy większa niż odległość środka podstawy od ściany bocznej. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCD jest trójkąt ABC . Krawędź AD jest wysokością ostrosłupa (zobacz rysunek).


PIC


Oblicz objętość ostrosłupa ABCD , jeśli wiadomo, że |AD | = 12, |BC | = 6,|BD | = |CD | = 13 .

*Ukryj

Podstawą ostrosłupa ABCD jest trójkąt ABC . Krawędź AD jest wysokością ostrosłupa (zobacz rysunek).


PIC


Oblicz objętość ostrosłupa ABCD , jeśli wiadomo, że |AD | = 24,|BC | = 12,|BD | = |CD | = 26 .

Podstawą graniastosłupa jest trójkąt prostokątny równoramienny o ramieniu długości 9. Kąt między przekątną największej ściany bocznej i wysokością graniastosłupa jest równy 60∘ . Oblicz pole powierzchni bocznej i objętość tego graniastosłupa.

*Ukryj

Podstawą graniastosłupa jest trójkąt prostokątny równoramienny o ramieniu długości 6. Kąt między przekątną największej ściany bocznej i wysokością graniastosłupa jest równy 60∘ . Oblicz pole powierzchni bocznej i objętość tego graniastosłupa.

W kulę o promieniu długości R wpisano walec o największej objętości. Wyznacz stosunek objętości kuli do objętości tego walca.

Podstawą ostrosłupa ABCDS jest prostokąt ABCD o bokach długości |AB | = 7 i |BC | = 14 . Krawędź CS jest prostopadła do podstawy. Najdłuższa krawędź boczna tworzy z podstawą kąt 50∘ . Wykonaj rysunek pomocniczy tego ostrosłupa oraz oblicz jego objętość.

Trójkąt prostokątny o przyprostokątnych długości 12 i 7 obraca się wokół przeciwprostokątnej. Oblicz promień kuli wpisanej w otrzymaną bryłę.

Prostokąt ABCD obracając się wokół boku AB , zakreślił walec w 1 . Ten sam prostokąt obracając się wokół boku AD , zakreślił walec w2 . Otrzymane walce mają równe pola powierzchni całkowitych. Wykaż, że prostokąt ABCD jest kwadratem.

Pole powierzchni bocznej stożka jest cztery razy większe od pola podstawy. Obwód przekroju osiowego stożka jest równy 30. Oblicz objętość tego stożka

Wysokość ostrosłupa prawidłowego czworokątnego jest 2 razy dłuższa od krawędzi jego podstawy. Przez przekątną podstawy i środek rozłącznej z nią krawędzi bocznej poprowadzono płaszczyznę. Oblicz pole otrzymanego przekroju, wiedząc, że krawędź podstawy ostrosłupa ma długość a .

*Ukryj

Wysokość ostrosłupa prawidłowego czworokątnego jest 2,5 razy dłuższa od krawędzi jego podstawy. Przez przekątną podstawy i środek rozłącznej z nią krawędzi bocznej poprowadzono płaszczyznę. Oblicz pole otrzymanego przekroju, wiedząc, że krawędź podstawy ostrosłupa ma długość a .

W stożek o promieniu r i wysokości h wpisujemy graniastosłupy sześciokątne prawidłowe tak, że jedna podstawa jest zawarta w podstawie stożka, a pozostałe wierzchołki należą do powierzchni bocznej stożka. Podaj wymiary graniastosłupa o największym polu powierzchni bocznej.

Pole podstawy ostrosłupa prawidłowego trójkątnego jest równe  √ -- 2 9 3 cm , a jego pole powierzchni bocznej jest równe  √ -- 18 3 cm 2 . Oblicz objętość tego ostrosłupa.

Trzy wychodzące z jednego wierzchołka krawędzie równoległościanu są równe a,b i c . Krawędzie a i b są prostopadłe, a krawędź c tworzy z każdą z nich kąt ostry α . Oblicz objętość równoległościanu.

W graniastosłupie prawidłowym sześciokątnym wszystkie krawędzie mają jednakową długość. Wyznacz tangensy kątów nachylenia przekątnych graniastosłupa do płaszczyzny podstawy.

*Ukryj

W graniastosłupie prawidłowym sześciokątnym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Wyznacz tangensy kątów nachylenia przekątnych graniastosłupa do płaszczyzny podstawy.

W ostrosłupie prawidłowym trójkątnym kąt płaski przy wierzchołku ostrosłupa ma miarę α , zaś odległość wierzchołka podstawy od krawędzi bocznej, do której nie należy, jest równa d . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Strona 1 z 17>>>>