Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

W urnie jest 7 kul czarnych i 5 białych. Sześć z nich przekładamy do drugiej urny, początkowo pustej, i z niej losujemy 2 kule bez zwracania. Jakie jest prawdopodobieństwo, że druga z nich będzie biała.

Z talii 24 kart wyjęto losowo 1 kartę i odłożono na bok. Następnie wylosowano 2 karty. Oblicz prawdopodobieństwo, że za drugim razem wylosowano 2 kiery.

Rzucamy dwa razy sześcienną kostką do gry. Oblicz prawdopodobieństwo wyrzucenia dwa razy nieparzystej liczby oczek, jeżeli wiadomo, że pięć oczek nie wypadło ani razu.

Z talii 52 kart wylosowano dwie karty i, nie oglądając ich, włożono do drugiej talii. W ten sposób powstała talia złożona z 54 kart. Oblicz prawdopodobieństwo wylosowania asa z tak utworzonej talii kart.

W klasach 3a, 3b i 3c przeprowadzono sprawdzian. Losowo wybieramy klasę, a następnie ucznia z tej klasy. Jakie jest prawdopodobieństwo, że wybrany uczeń otrzymał ocenę co najmniej 4, jeżeli wiadomo, że
w klasie 3a: wszystkich uczniów jest 20, uczniów z oceną co najmiej cztery jest 8;
w klasie 3b: wszystkich uczniów jest 21, uczniów z oceną co najmiej cztery jest 14;
w klasie 3c: wszystkich uczniów jest 18, uczniów z oceną co najmiej cztery jest 6.

W dwóch urnach znajdują się kule białe i czarne, przy czym w pierwszej jest 6 kul białych i 4 czarne, a w drugiej urnie 5 białych i 5 czarnych. Rzucamy raz symetryczną kostką do gry. Jeżeli wyrzucimy co najmniej 4 oczka to losujemy 2 kule z pierwszej urny, a jeżeli wyrzucimy co najwyżej 3 oczka to losujemy 2 kule z drugiej urny. Oblicz prawdopodobieństwo wylosowania dwóch kul białych.

Wśród dziesięciu losów loteryjnych znajduje się jeden los z główną wygraną oraz dwa losy uprawniające do wylosowania następnego losu. Oblicz prawdopodobieństwo wygrania przy zakupie jednego losu.

Rzucamy raz sześcienną kostką do gry, a następnie rzucamy tyloma monetami, ile oczek wypadło na kostce. Oblicz prawdopodobieństwo tego, że dokładnie na jednej z wyrzuconych monet jest reszka. Wynik podaj w postaci ułamka nieskracalnego.

Z trzech urn, w których jest po 2 kule białe i 3 czarne, wyjmujemy po jednej kuli i wkładamy do czwartej urny, w której była jedna kula biała. Losujemy teraz jedną kulę z czwartej urny. Oblicz prawdopodobieństwo, że z czwartej urny wyjmiemy białą kulę.

Zestaw tematów egzaminacyjnych składa się z 15 tematów z algebry, 15 z geometrii i n tematów z prawdopodobieństwa. Z zestawu usunięto jeden temat, a następnie wylosowano z pozostałych jeden temat. Oblicz n , jeśli wiadomo, że prawdopodobieństwo wylosowania tematu z prawdopodobieństwa wynosi 1 4 .

Janek przeprowadza doświadczenie losowe, w którym jako wynik może otrzymać jedną z liczb: 0, 1, 2, 3, 4, 5, 6. Prawdopodobieństwo pk otrzymania liczby k jest dane wzorem: pk = -1 ⋅(6) 64 k . Rozważamy dwa zdarzenia:
– zdarzenie A polegające na otrzymaniu liczby ze zbioru {1 ,3,5} ,
– zdarzenie B polegające na otrzymaniu liczby ze zbioru {2,3,4,5 ,6 } .
Oblicz prawdopodobieństwo warunkowe P(A |B )

  • Wpuszczony do labiryntu szczur, dochodząc do rozwidlenia dróg, dwa razy częściej skręca w lewo niż w prawo. Jakie jest prawdopodobieństwo tego, że dotrze do pokarmu (oznaczonego na rysunku P )?
    PIC

  • Inny szczur wpuszczony do tego samego labiryntu, dochodząc do rozwidlenia dróg, skręca w prawo w x % przypadków. Oblicz x , jeśli prawdopodobieństwo tego, że dotrze do pokarmu, jest równe  9 16 .

Rzucamy dwukrotnie kostką do gry. Jakie jest prawdopodobieństwo, że suma wyrzuconych oczek jest większa niż 9, jeżeli wiadomo, że dokładnie jeden raz wypadło 6 oczek?

Mamy dwie talie kart po 24 karty. Z pierwszej talii losujemy jedną kartę i nie oglądając jej wkładamy do drugiej talii. Następnie z drugiej talii losujemy jedną kartę.

  • Jakie jest prawdopodobieństwo wylosowania króla, jeżeli wiemy, że z pierwszej talii przełożono do drugiej trefla?
  • Obliczyć prawdopodobieństwo, że wylosowana karta jest kierem.
  • Wylosowana karta okazała się kierem. Jakie jest prawdopodobieństwo tego, że z pierwszej talii także został wylosowany kier?

Oblicz prawdopodobieństwo warunkowe, że w czterokrotnym rzucie symetryczną sześcienną kostką do gry otrzymamy co najmniej dwie „dwójki”, pod warunkiem że otrzymamy co najmniej jedną „piątkę”.

Urzędnik bankowy wie, że 12% kredytobiorców hipotecznych traci pracę i przestaje spłacać pożyczkę w ciągu 5 lat. Wie też, że 20% kredytobiorców hipotecznych traci pracę w ciągu 5 lat. Przy założeniu, że kredytobiorca hipoteczny stracił pracę, jakie jest prawdopodobieństwo, iż przestanie spłacać pożyczkę.

W loterii szkolnej losujemy jeden spośród 100 losów, przy czym w przypadku wyciągnięcia losu przegrywającego możemy wylosować jeszcze jeden los. Ile losów w tej loterii jest wygrywających, jeżeli prawdopodobieństwo wygranej jest równe 19 55 ?

Do koszyka włożono 12 jabłek, w tym dwa jabłka lobo. Po kilku dniach przechowywania z koszyka usunięto dwa popsute jabłka. Następnie losowo wybrano jedno jabłko. Oblicz prawdopodobieństwo, że wybrano jabłko lobo. Wynik podaj w postaci ułamka nieskracalnego.

W pierwszej urnie są kule czarne i białe, w drugiej 10 kul niebieskich i 15 kul zielonych, a w trzeciej – 14 kul niebieskich i 7 zielonych. Najpierw losujemy kulę z pierwszej urny, a następnie losujemy kulę z drugiej albo z trzeciej urny w zależności od tego, czy z pierwszej urny wylosowaliśmy odpowiednio kulę białą, czy czarną. Oblicz prawdopodobieństwo wylosowania czarnej kuli z pierwszej urny, jeżeli prawdopodobieństwo wylosowania według opisanego schematu kuli niebieskiej jest takie samo jak zielonej.

Rzucamy dwa razy kostką do gry. Jeśli suma oczek wyrzuconych na obu kostkach jest liczbą podzielną przez 3, losujemy jedną liczbę ze zbioru Z 1 = {1,2,3 ,... ,2n + 7} , w przeciwnym przypadku losujemy jedną liczbę ze zbioru Z = {1,2 ,3,...,2n} 2 . Oblicz prawdopodobieństwo wylosowania liczby parzystej.

Strona 1 z 2>>>>