Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm. Oblicz pole tego trójkąta.

W trójkącie prostokątnym dany jest kąt ostry o mierze α i pole P tego trójkąta. Obliczyć długość środkowej poprowadzonej z wierzchołka kąta prostego.

Dany jest trójkąt prostokątny ABC , w którym BC = 30 , AC = 40 i AB = 50 . Okrąg wpisany w trójkąt ABC jest styczny do boku AB w punkcie M . Oblicz długość odcinka CM .


PIC


Przyprostokątne trójkąta ABC mają długości 10 i 24. Przeciwprostokątna trójkąta KLM podobnego do niego ma długość 39. Oblicz pole trójkąta KLM .

*Ukryj

Przyprostokątne trójkąta prostokątnego ABC mają długości 9 i 40. Najdłuższy bok tego trójkąta jest równy najkrótszemu bokowi trójkąta KLM podobnego do trójkąta ABC . Oblicz pole trójkąta KLM .

Trójkąty prostokątne ABC i DEF są podobne. Przyprostokątne trójkąta ABC mają długości 5 i 12, a przeciwprostokątna trójkąta DEF ma długość 26. Wyznacz pole trójkąta DEF .

Dany jest trójkąt prostokątny o kącie ostrym  ∘ 30 . Oblicz obwód tego trójkąta, jeżeli przeciwprostokątna ma długość 12 dm.

Dany jest trójkąt ABC gdzie  ∘ |∡ACB | = 9 0 .


PIC


Wiadomo, że tgα = 53 . Podaj wartości pozostałych funkcji trygonometrycznych kąta α .

*Ukryj

Dany jest trójkąt ABC gdzie  ∘ |∡ACB | = 9 0 .


PIC


Wiadomo, że tgα = 54 . Podaj wartości pozostałych funkcji trygonometrycznych kąta α .

Dany jest trójkąt prostokątny, w którym a , b oznaczają długości przyprostokątnych, α jest miarą kąta ostrego leżącego naprzeciw przyprostokątnej a . Wiadomo, że  √-- sin α = -10- 10 . Oblicz

  • tangens kąta α ;
  • wartość wyrażenia  2 3 ⋅aa−b-+ 2 ⋅a2b+b2 .

PIC

Przyprostokątne trójkąta prostokątnego ABC mają długości 12 i 6. Oblicz długość promienia okręgu stycznego do obu przyprostokątnych, którego środek O leży na przeciwprostokątnej, oraz oblicz odległości środka O od wierzchołków trójkąta ABC .

Dany jest trójkąt prostokątny o polu  √ -- 2 3 i kącie ostrym  ∘ 30 . Oblicz długości przyprostokątnych tego trójkąta.

Wykaż, że wysokość CD trójkąta prostokątnego ABC poprowadzona z wierzchołka C kąta prostego dzieli przeciwprostokątną na odcinki AD i DB , których stosunek długości jest równy stosunkowi kwadratów długości przyprostokątnych odpowiednio AC i BC tego trójkąta.

Na okręgu o promieniu 1 opisano trójkąt prostokątny, którego przyprostokątne mają długości x i y .

  • Wyznacz y jako funkcję x i określ dziedzinę tej funkcji.
  • Sporządź wykres tej funkcji.

Na zewnątrz trójkąta prostokątnego ABC , w którym  ∘ |∡ACB | = 90 oraz |AC | = 5,|BC | = 12 zbudowano kwadrat ACDE .


PIC


Punkt H leży na prostej AB i kąt |∡EHA | = 90∘ . Oblicz pole trójkąta HAE .

W trójkąt prostokątny ABC o przyprostokątnych długości |AC | = 3 i |BC | = 4 wpisano dwa przystające okręgi w ten sposób, że są one wzajemnie styczne oraz jeden z nich jest styczny do boków AB i BC , a drugi do boków AC i BC .


PIC


Oblicz długość promienia tych okręgów.

Na zewnątrz równoramiennego trójkąta prostokątnego o przyprostokątnych równych a zbudowano kwadraty tak, że bok każdego kwadratu jest jednocześnie bokiem trójkąta. Środki symetrii tych kwadratów połączono odcinkami i otrzymano trójkąt MNP . Wykaż, że pole trójkąta MNP jest równe  2 a .


PIC


Uzasadnij, że nie istnieje trójkąt prostokątny, w którym przeciwprostokątna ma długość 24, a kąty ostre α i β są takie, że cos α = 34 i tg β = 43 .

Oblicz długości boków trójkąta prostokątnego, którego obwód wynosi 70, a pole 210.

*Ukryj

Oblicz długości boków trójkąta prostokątnego, którego obwód wynosi 40, a pole 60.

Wysokość trójkąta prostokątnego poprowadzona na przeciwprostokątną dzieli ją na odcinki długości 1 cm i 49 cm. Oblicz pole tego trójkąta.

Przez wierzchołek kąta prostego trójkąta prostokątnego o przyprostokątnych 5 i 12 poprowadzono prostą, która dzieli ten trójkąt na dwa trójkąty o równych obwodach. Znajdź stosunek promieni okręgów wpisanych w otrzymane z podziału trójkąty.

Długość przeciwprostokątnej trójkąta prostokątnego o obwodzie 90 jest liczbą całkowitą i jest o 1 większa od długości jednej z przyprostokątnych. Oblicz pole tego trójkąta.

Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że |AD | = |BE | .


PIC


Strona 1 z 5>>>>