Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Dla jakich wartości parametru m suma odwrotności pierwiastków równania x 2 + mx − 16 = 0 jest równa -4?

Wyznacz wszystkie wartości parametru m , dla których jeden z pierwiastków równania

4x 2 − 35x + m2 = 0

jest kwadratem drugiego pierwiastka. Oblicz te pierwiastki.

Wyznacz te wartości parametru a , dla których różne pierwiastki x1 i x2 równania x 2 − 3x − a+ 1 = 0 spełniają warunek 3x1 − 2x2 = 4 .

Wyznacz współczynniki b i c trójmianu kwadratowego  2 f (x) = x + bx + c , wiedząc że jego miejsca zerowe x1 i x2 spełniają warunek: x1 = 9 i x1 ⋅x2 = − 63 .

Dane jest równanie  2 x + bx + c = 0 z niewiadomą x . Wyznacz wartości b i c tak, by były one rozwiązaniami danego równania.

Punkt (p,q) należy do zbioru A wtedy i tylko wtedy, gdy równanie x 2 − 2px + q = 0 ma dwa różne rozwiązania x1 i x2 takie, że x21 + x22 = 2 . Zaznacz w układzie współrzędnych zbiór A .

Oblicz wszystkie wartości parametru m , dla których równanie x 2 − (m + 2)x + m + 4 = 0 ma dwa różne pierwiastki rzeczywiste x1,x 2 takie, że x41 + x42 = 4m 3 + 6m 2 − 32m + 12 .

Dla jakich wartości parametru m równanie  2 m−-2 x + 3x − m− 3 = 0 ma dwa pierwiastki rzeczywiste? Wyznacz te wartości parametru m , dla których suma sześcianów pierwiastków tego równania jest równa -9.

Dla jakich wartości parametru m równanie  2 2 x − mx + m − 2m + 1 = 0 ma dwa różne pierwiastki rzeczywiste, których suma jest o jeden większa od ich iloczynu?

Dane jest równanie  2 2 8x − 4nx − 4x − 5n − 3 = 0 z niewiadomą x i parametrem n .

  • Wyznacz wszystkie wartości n , dla których suma odwrotności pierwiastków tego równania jest równa − 12 23 .
  • Wykaż, że jeżeli n jest liczbą całkowitą, to suma kwadratów pierwiastków tego równania też jest liczbą całkowitą.

Dla jakich wartości parametru m suma pierwiastków równania x 2 − 2m (x − 1) − 1 = 0 jest równa sumie kwadratów tych pierwiastków?

Wyznacz wszystkie liczby m ∈ R , dla których równanie  2 x + mx + (2m + 1) = 0 ma dwa różne pierwiastki rzeczywiste x1 i x2 takie, że x31 + x32 = 26 .

*Ukryj

Wyznacz wszystkie liczby m ∈ R , dla których równanie  2 x + mx + m + 4 = 0 ma dwa różne pierwiastki rzeczywiste x1 i x2 takie, że x31 + x32 = 64 .

Oblicz wszystkie wartości parametru m , dla których równanie x 2 − (m + 2)x + m + 4 = 0 ma dwa różne pierwiastki rzeczywiste x 1, x2 takie, że x31 + x32 = −m 4 + m 3 + 15m 2 − 6m + 12 .

Liczby x1,x2 są takimi rozwiązaniami równania  2 x + bx + c = 0  2 (b > 4c) , że x1x 2 = 3 i (x1 − x2)2 = 4 . Oblicz b i c .

Wyznacz wszystkie wartości parametru m , dla których równanie 2x 2 + (3 − 2m )x − m + 1 = 0 ma dwa różne pierwiastki x1,x 2 takie, że |x1 − x2| = 3 .

Wyznacz wszystkie wartości parametru m , dla których funkcja kwadratowa f (x) = x2 − (2m + 2)x + 2m + 5 ma dwa różne pierwiastki x 1,x2 takie, że suma kwadratów odległości punktów A = (x1,0) i B = (x2,0) od prostej o równaniu x+ y+ 1 = 0 jest równa 6.

Liczby  √ --- x1 = 5 + 23 i  √ --- x 2 = 5− 23 są rozwiązaniami równania x 2 − (p 2 + q2)x + (p + q) = 0 z niewiadomą x . Oblicz wartości p i q .

Wyznacz wszystkie wartości parametru m , dla których równanie x 2 + mx + 3 = 0 ma dwa różne pierwiastki rzeczywiste, takie, że suma ich czwartych potęg jest równa 82.

*Ukryj

Wyznacz wszystkie wartości parametru m , dla których równanie x 2 − mx + 3 = 0 ma dwa różne pierwiastki rzeczywiste x1 i x2 takie, że x14+ x 42 = 46 .

Wyznacz te wartości parametru m , dla których równanie  2 x − (m − 3)x+ m − 1 = 0 ma dwa rozwiązania x1 i x2 spełniające warunek x21x 2 + x 1x22 + x1x2 = 2 .

Wyznacz wszystkie wartości parametru m , dla których równanie x 2 + mx + 8 = 0 ma dwa różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest równa 1 1m − 34 .

Wyznacz wszystkie wartości parametru m ∈ R , dla których równanie x 2 − mx + 3 = 0 ma dwa różne pierwiastki x1 i x 2 takie, że x41 + x42 = 46 .

Strona 1 z 2>>>>