Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Odcinek CD jest wysokością trójkąta ABC , w którym  1 |AD | = |CD | = 2|BC | (zobacz rysunek). Okrąg o środku C i promieniu CD jest styczny do prostej AB . Okrąg ten przecina boki AC i BC trójkąta odpowiednio w punktach K i L .


PIC


Zaznaczony na rysunku kąt α wpisany w okrąg jest równy
A) 37,5∘ B) 45∘ C) 52 ,5 ∘ D) 60∘

Kąt środkowy oparty na łuku, którego długość jest równa 4 9 długości okręgu, ma miarę
A) 160 ∘ B) 80∘ C) 40 ∘ D) 20∘

*Ukryj

Kąt środkowy oparty na łuku, którego długość jest równa 3 8 długości okręgu, ma miarę
A) 270 ∘ B) 135∘ C) 67 ,5 ∘ D) 33,7 5∘

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Suma miar tych kątów jest równa kątowi prostemu. Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ADC jest równoboczny
B) ADC jest prostokątny
C) ABC jest równoboczny
D) ABC jest prostokątny

*Ukryj

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Suma miar tych kątów jest równa 135∘ . Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ADC jest równoboczny
B) ADC jest prostokątny
C) ABC jest równoboczny
D) ABC jest prostokątny

W okręgu o środku w punkcie B kąt środkowy α i kąt wpisany β oparte są na tym samym łuku wyznaczonym przez punkty A i C leżące na okręgu. Różnica miar tych kątów jest równa 30∘ . Wierzchołek kąta β znajduje się w punkcie D . Wynika stąd, że trójkąt
A) ABC jest równoboczny
B) ADC jest prostokątny
C) ADC jest równoboczny
D) ABC jest prostokątny

Miara kąta wpisanego opartego na 3 5 okręgu wynosi:
A) 72∘ B) 105∘ C) 10 8∘ D) 21 6∘

*Ukryj

Kąt wpisany oparty jest na łuku, którego długość jest równa 5- 12 długości okręgu. Miara tego kąta wynosi
A) 75∘ B) 300∘ C) 15 0∘ D) 37 ,5 ∘

Jaką miarę ma kąt wpisany oparty na 5 9 łuku okręgu?
A) 100 ∘ B) 200∘ C) 60 ∘ D) 50∘

Miara kąta α wynosi


PIC


A) 3 0∘ B) 40∘ C) 50 ∘ D) 60∘

*Ukryj

Miara kąta α wynosi


PIC


A) 3 0∘ B) 40∘ C) 50 ∘ D) 60∘

Miara kąta α wynosi


PIC


A) 30∘ B) 4 0∘ C) 50∘ D) 60∘

Punkty A ,B,C ,D leżą na okręgu o środku O (zobacz rysunek). Miara zaznaczonego kąta α jest równa


PIC


A) 54,5∘ B) 31∘ C) 34 ∘ D) 27∘

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 70∘ B) 110∘ C) 14 0∘ D) 21 0∘

*Ukryj

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 160 ∘ B) 80∘ C) 10 0∘ D) 70 ∘

Cięciwa dzieli okrąg na dwa łuki w stosunku 5:7. Miara kąta wpisanego opartego na krótszym łuku okręgu jest równa
A) 150 ∘ B) 105∘ C) 90 ∘ D) 75∘

Średnice AB i CD okręgu o środku S przecinają się pod kątem  ∘ 50 (tak jak na rysunku).


PIC


Miara kąta α jest równa
A) 25∘ B) 3 0∘ C) 40∘ D) 50∘

*Ukryj

Średnice AB i CD okręgu o środku S przecinają się pod kątem  ∘ 40 (tak jak na rysunku).


PIC


Miara kąta α jest równa
A) 80∘ B) 4 0∘ C) 30∘ D) 20∘

Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę


PIC


A) 1 50∘ B) 120∘ C) 115 ∘ D) 85∘

*Ukryj

Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę


PIC


A) 1 70∘ B) 70∘ C) 95 ∘ D) 85∘

Punkty A , B i C leżą na okręgu o środku O (zobacz rysunek). Zaznaczony na rysunku wypukły kąt środkowy AOB ma miarę


PIC


A) 60∘ B) 100∘ C) 12 0∘ D) 14 0∘

Punkt O jest środkiem okręgu (zobacz rysunek). Miara kąta LKM jest równa


PIC


A) 30∘ B) 6 0∘ C) 90∘ D) 120∘

Punkt O jest środkiem okręgu (rysunek).


PIC


Miara kąta α jest równa
A) 110 ∘ B) 70∘ C) 16 0∘ D) 14 0∘

Odcinek AB jest średnicą okręgu o środku O .


PIC


Miara kąta DBC oznaczonego na rysunku literą α jest równa
A) 100 ∘ B) 90∘ C) 95 ∘ D) 85∘

Miara kąta wpisanego opartego na tym samym łuku co kąt środkowy o mierze 78 ∘ jest równa
A) 156 ∘ B) 39∘ C) 34 ∘ D) 87∘

*Ukryj

Miara kąta wpisanego opartego na tym samym łuku co kąt środkowy o mierze 52 ∘ jest równa
A) 104 ∘ B) 29∘ C) 26 ∘ D) 58∘

Kąt ABC (patrz rysunek) ma miarę


PIC


A) 4 0∘ B) 50∘ C) 60 ∘ D) 70∘

Jeżeli suma miar kąta środkowego i kąta wpisanego opartych na tym samym łuku jest równa 1 80∘ , to kąty te są oparte na
A) 12 okręgu B) 23 okręgu C) 1 3 okręgu D) 1 4 okręgu

Suma miar kąta wpisanego i kąta środkowego, opartych na 1 6 okręgu, jest równa
A) 60∘ B) 180∘ C) 45 ∘ D) 90∘

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miara zaznaczonego kąta wpisanego ACB jest równa
A) 65∘ B) 100∘ C) 11 5∘ D) 13 0∘

*Ukryj

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miara zaznaczonego kąta wpisanego ACB jest równa
A) 50∘ B) 100∘ C) 11 5∘ D) 13 0∘

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miara zaznaczonego kąta wpisanego ACB jest równa
A) 125 ∘ B) 110∘ C) 55 ∘ D) 70∘

Punkt O jest środkiem okręgu. Kąt wpisany α ma miarę


PIC


A) 8 0∘ B) 100∘ C) 11 0∘ D) 12 0∘

Punkt O jest środkiem okręgu. Kąt wpisany α ma miarę


PIC


A) 7 5∘ B) 95∘ C) 10 5∘ D) 11 0∘

Punkt S jest środkiem koła. Zatem miara kąta α jest równa


PIC


A) 7 0∘ B) 220∘ C) 14 0∘ D) 25 0∘

Średnice AB i CD okręgu o środku S przecinają się pod kątem  ∘ 130 (tak jak na rysunku).


PIC


Miara kąta α jest równa
A) 65∘ B) 100∘ C) 11 5∘ D) 13 0∘

Miara kąta β zaznaczonego na rysunku obok jest równa:


PIC


A) 76∘ B) 284∘ C) 15 2∘ D) 14 2∘

W okręgu o środku O dany jest kąt o mierze  ∘ 50 , zaznaczony na rysunku.


PIC


Miara kąta oznaczonego na rysunku literą α jest równa
A) 40∘ B) 5 0∘ C) 20∘ D) 25∘

*Ukryj

W okręgu o środku O dany jest kąt o mierze  ∘ 40 , zaznaczony na rysunku.


PIC


Miara kąta oznaczonego na rysunku literą α jest równa
A) 40∘ B) 5 0∘ C) 20∘ D) 25∘

Miara kąta α trójkąta ABC wpisanego w okrąg o środku S jest równa


PIC


A) 38∘ B) 4 0∘ C) 42∘ D) 44∘

*Ukryj

Na rysunku poniżej punkt S jest środkiem okręgu i miara kąt ABC wynosi 44 ∘ . Ile stopni ma kąt ACS ?


PIC


A) 56∘ B) 4 6∘ C) 44∘ D) 40∘

Jeżeli punkty A ,B ,C leżące na okręgu o środku S są wierzchołkami trójkąta równobocznego, to miara kąta środkowego ASB jest równa


PIC


A) 100 ∘ B) 110∘ C) 12 0∘ D) 13 0∘

Punkty A ,B,C ,D dzielą okrąg o środku S w stosunku 2,5 : 1 : 4,5 : 4 .


PIC


Różnica miar kątów wypukłych DSC i ASB jest równa
A) 60∘ B) 9 0∘ C) 75∘ D) 50∘

Strona 1 z 2>>>>