Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Ze zbioru cyfr {1,2 ,3,4,5,6,7} losujemy kolejno bez zwracania dwie cyfry i zapisujemy je, tworząc liczbę dwucyfrową. Ile jest możliwości utworzenia w ten sposób liczby podzielnej przez 3?
A) 6 B) 12 C) 14 D) 15

Wszystkich par (a ,b ) takich, że a ∈ { 1,2,3,4,5,6,7} , b ∈ {1,2,3,4 ,5,6,7,8,9} oraz suma a + b jest podzielna przez 3, jest
A) mniej niż 21 B) dokładnie 21 C) dokładnie 22 D) więcej niż 22

Liczba wszystkich sposobów utworzenia liczb trzycyfrowych o różnych cyfrach ze zbioru {0 ,1,2,3,4,5} jest równa
A) 120 B) 100 C) 60 D) 60

Ile jest wszystkich liczb naturalnych trzycyfrowych podzielnych przez 6 i niepodzielnych przez 9?
A) 60 B) 120 C) 100 D) 150

Pan Jakub ma 4 marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 280 B) 21 C) 28 D) 70

*Ukryj

Pan Jakub ma 8 marynarek, 5 par różnych spodni i 9 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 240 B) 22 C) 360 D) 90

Pan Tomasz ma 5 marynarek, 9 par różnych spodni i 6 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 20 B) 45 C) 280 D) 270

Pan Łukasz ma 3 marynarki, 8 par różnych spodni i 11 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i koszulę.
A) 280 B) 22 C) 132 D) 264

Wyrażenie (n+2)!⋅(n−-2)!- n!⋅n! dla liczby naturalnej n ≥ 2 jest równe
A) n2 − 4 B) (n 2 − 4)(n2 − 1) C) n2+3n+-2 n2−n D) n+2- n

*Ukryj

Wyrażenie (n+2)!⋅(n−-1)!- (n+1)!⋅n! dla liczby naturalnej n ≥ 1 jest równe
A) n2 + n − 2 B) (n 2 − 4)(n2 − 1) C) n2+n−-2 n2+n D) n+2- n

Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne mają być tego samego koloru, a pas znajdujący się między nimi ma być innego koloru. Liczba różnych takich flag, które można uszyć, mając do dyspozycji tkaniny w 10 kolorach, jest równa


PIC


A) 100 B) 99 C) 90 D) 19

*Ukryj

Każdą z sześciu krawędzi sześciokątnej ramki postanowiono pomalować na jeden z 10 kolorów, przy czym przeciwległe krawędzie mają mieć ten sam kolor, a żadne dwie sąsiednie krawędzie nie mogą mieć tego samego koloru. Liczba różnych możliwości pokolorowania ramki jest równa


PIC


A) 720 B) 1000 C) 30 D) 27

Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne mają być tego samego koloru, a pas znajdujący się między nimi ma być innego koloru. Liczba różnych takich flag, które można uszyć, mając do dyspozycji tkaniny w 11 kolorach, jest równa


PIC


A) 121 B) 110 C) 90 D) 21

Ile jest wszystkich liczb pięciocyfrowych, większych 43080, utworzonych wyłącznie z cyfr 1, 2, 3, 4 przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?
A) 48 B) 15 C) 128 D) 192

Pan Eugeniusz szykując się rano do pracy wybiera jeden spośród swoich 12 zegarków oraz dwa spośród 22 wiecznych piór, przy czym jedno z nich traktuje jako pióro zapasowe. Na ile sposobów może wybrać zestaw składający się z zegarka i dwóch piór, głównego i zapasowego?
A) 2777 B) 34 C) 5544 D) 5808

*Ukryj

Pan Henryk szykując się rano do pracy wybiera jeden spośród swoich 10 zegarków oraz dwa spośród 18 wiecznych piór, przy czym jedno z nich traktuje jako pióro zapasowe. Na ile sposobów może wybrać zestaw składający się z zegarka i dwóch piór, głównego i zapasowego?
A) 45 B) 46 C) 3240 D) 3060

Ile jest liczb naturalnych pięciocyfrowych, których iloczyn cyfr jest równy 70?
A) 60 B) 36 C) 12 D) 125

W pewnym mieście na czas festynu postanowiono rozstawić stragany. Ustalono, że będzie można ustawić po 3 stragany po każdej stronie drogi. Na ile sposobów można ustawić te stragany?
A) 6 B) 24 C) 36 D) 720

*Ukryj

W trakcie zawodów sportowych ośmioro uczniów miało ustawić się w dwóch rzędach po 4 osoby. Na ile sposobów mogą ustawić się ci uczniowie?
A) 4 B) 576 C) 40320 D)  8 8

Ile jest liczb naturalnych dwucyfrowych większych od 27 , które mają dwie różne cyfry?
A) 63 B) 72 C) 65 D) 18

*Ukryj

Ile jest liczb naturalnych dwucyfrowych mniejszych od 6 3 , które mają dwie różne cyfry?
A) 45 B) 48 C) 63 D) 58

Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3?
A) 12 B) 24 C) 29 D) 30

*Ukryj

Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 4?
A) 21 B) 22 C) 23 D) 24

Ile jest wszystkich liczb naturalnych dwucyfrowych, w których obie cyfry są parzyste?
A) 16 B) 20 C) 24 D) 25

*Ukryj

Ile jest wszystkich liczb naturalnych dwucyfrowych, w których pierwsza cyfra jest parzysta, a druga nieparzysta?
A) 16 B) 20 C) 24 D) 25

Ile jest wszystkich liczb naturalnych dwucyfrowych, w których obie cyfry są nieparzyste?
A) 16 B) 20 C) 24 D) 25

Wszystkich liczb dwucyfrowych o różnych cyfrach jest
A) 90 B) 81 C) 82 D) 80

Liczb dwucyfrowych większych od 50 o nieparzystych cyfrach jest
A) 12 B) 25 C) 49 D) 15

Ile jest liczb naturalnych pięciocyfrowych, w których iloczyn cyfr jest równy 0?
A) 59049 B) 30951 C) 3439 D) 6561

Wszystkich liczb naturalnych dwucyfrowych, których obie cyfry są mniejsze od 5 jest
A) 16 B) 20 C) 25 D) 30

*Ukryj

Wszystkich liczb naturalnych dwucyfrowych, których obie cyfry są większe od 4 jest
A) 16 B) 20 C) 25 D) 30

Ze zbioru {0,1,2,5,7} losujemy jedną liczbę, zapisujemy ją, a następnie bez zwracania losujemy i zapisujemy drugą. Ile w ten sposób otrzymamy liczb dwucyfrowych?
A) 20 B) 16 C) 12 D) 10

Wszystkich liczb naturalnych dwucyfrowych, których obie cyfry są mniejsze od 5 jest
A) 17 B) 18 C) 19 D) 20

Liczba  20 (10) jest podzielna przez
A) 5 B) 33 C) 221 D) 51

Ośmiu znajomych, wśród których jest jedno małżeństwo, kupiło bilety do kina na kolejne miejsca w jednym rzędzie (w rzędzie było dokładnie 8 miejsc). Wszystkich możliwych sposobów zajęcia miejsc tak, aby małżonkowie siedzieli obok siebie, jest:
A) 40320 B) 5040 C) 10080 D) 720

*Ukryj

Pięć osób: Asia, Marta, Agnieszka, Edyta i Piotrek wybrało się do kina. Na ile sposobów mogą te osoby usiąść w jednym rzędzie na pięciu kolejnych miejscach tak, żeby Agnieszka i Piotrek siedzieli obok siebie?
A) 48 B) 36 C) 24 D) 12

Pięć osób: Wojtek, Marta, Agnieszka, Edyta i Piotrek wybrało się do kina. Na ile sposobów mogą te osoby usiąść w jednym rzędzie na pięciu kolejnych miejscach tak, żeby Piotrek siedział pomiędzy Agnieszką i Edytą?
A) 48 B) 36 C) 24 D) 12

Pięć osób: Arek, Marta, Agnieszka, Edyta i Piotrek wybrało się do kina. Na ile sposobów mogą te osoby usiąść w jednym rzędzie na pięciu kolejnych miejscach tak, żeby Agnieszkę i Piotrka rozdzielała jedna osoba?
A) 48 B) 36 C) 24 D) 12

Ile jest wszystkich czterocyfrowych liczb naturalnych podzielnych przez 3?
A) 3000 B) 3333 C) 2999 D) 2998

W pudełku znajduje się 5 kartek, na których zapisano wszystkie możliwe jednocyfrowe liczby naturalne nieparzyste. Wyjmujemy z pudełka kolejno trzy kartki i układając je jedna obok drugiej tworzymy liczby trzycyfrowe. Liczb takich możemy utworzyć maksymalnie
A) 120 B) 125 C) 60 D) 15

Strona 1 z 4>>>>