Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Romb o kącie ostrym  ∘ 30 jest opisany na okręgu o promieniu 2. Oblicz pole tego rombu.

Znajdź długości przekątnych rombu o boku 29 jeżeli wiadomo, że ich różnica długości jest równa 2.

Stosunek długości przekątnych rombu o boku 17 cm jest równy 5:3. Oblicz pole rombu.

Pole rombu jest równe  2 6 0 cm . Dłuższa przekątna rombu podzieliła kąt ostry rombu na takie dwa kąty o mierze α , że tg α = 185 . Oblicz długość boku rombu.

W rombie jedna z przekątnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekątnych pole rombu jest większe od 5cm 2 ?

Krótsza przekątna rombu o długości  √ -- 8 3 cm dzieli go na dwa trójkąty równoboczne. Oblicz pole rombu.

Pole rombu jest równe 120. Gdyby zwiększyć długości jego przekątnych odpowiednio o 2 i 5 to pole wzrosłoby o 55. Oblicz obwód rombu. Podaj wszystkie możliwe odpowiedzi.

O ile procent zmniejszy się pole rombu, jeśli jedną przekątną rombu zwiększymy o 20%, a drugą przekątną skrócimy o 40%?

Oblicz pole rombu, którego jeden z kątów wewnętrznych wynosi  ∘ 120 , a przekątna poprowadzona z wierzchołka tego kąta ma długość 10 cm.

Na bokach AB , AD i BC rombu ABCD wybrano odpowiednio punkty K ,L i M w ten sposób, że odcinki KL i KM są równoległe do przekątnych rombu. Wykaż, że odcinek LM przechodzi przez punkt przecięcia przekątnych rombu.

Oblicz pole rombu, w którym długość boku jest równa 13 cm, a długości przekątnych różnią się o 14 cm.

Na kole opisany jest romb. Stosunek pola koła do pola powierzchni rombu wynosi  √- π--3 8 . Wyznacz miarę kąta ostrego rombu.

W romb o boku długości 10 cm i wysokości 8 cm wpisano okrąg o1 .

  • Oblicz w jakiej odległości od środka boku znajduje się punkt styczności okręgu z tym bokiem.
  • Uzasadnij, że przez środki boków tego rombu można poprowadzić okrąg o2 i wyznacz długość promienia tego okręgu.
  • Korzystając z wyliczonych wielkości narysuj ten romb wraz z okręgami o1 i o2 w skali 1:2.

Kąt ostry rombu ABCD ma miarę  ∘ |∡A | = 6 0 . Na bokach AB i BC wybrano punkty K i L w ten sposób, że |AK | = |BL | . Uzasadnij, że trójkąt KLD jest trójkątem równobocznym.

Bok rombu ma długość 13, suma długości przekątnych jest równa 34.

  • Wyznacz pole rombu.
  • Wyznacz sinus kąta ostrego rombu.

Długość boku rombu jest równa a , a długości jego przekątnych są równe d1 i d 2 . Oblicz miarę kąta ostrego rombu jeżeli wiadomo, że  √ ----- a = d1d2 .

*Ukryj

Długość boku rombu ABCD jest średnią geometryczną długości jego przekątnych. Oblicz miarę kąta ostrego tego rombu.

Bok rombu ABCD ma długość a , a kąt ostry przy wierzchołku A ma miarę 30 ∘ . Oblicz długość odcinka łączącego wierzchołek D rombu z punktem boku AB , dzielącego ten bok w stosunku |AP | : |PB | = 1 : 2 .

Znaleźć kąt ostry rombu, jeżeli wiadomo, że jego pole jest równe  √ -- 24 2 , a promień okręgu w niego wpisanego równy √ -- 6 .

Na bokach AD , AB i BC rombu ABCD wybrano punkty K , L i M w ten sposób, że KL ∥ DB i LM ∥ AC . Uzasadnij, że pole czworokąta KMCD stanowi połowę pola rombu.


PIC


Przekątne rombu mają długość 8 cm i 13 cm. Oblicz pole czworokąta, którego wierzchołkami są środki boków romb.

Strona 1 z 2>>>>