Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Spośród wyrazów skończonego ciągu arytmetycznego (an) danego wzorem an = 5n + 8 , gdzie n = 1,2,...,15 wybieramy losowo 3. Oblicz prawdopodobieństwo, że iloczyn wybranych liczb jest podzielny przez 3.

Ze zbioru {1,2,3,...,102} losujemy 2 różne liczby. Jakie jest prawdopodobieństwo, że suma wylosowanych liczb jest podzielna przez 3?

Oblicz prawdopodobieństwo, że losowo wybrana liczba trzycyfrowa ma wszystkie cyfry różne.

Liczby ze zbioru {1,2,3,4,5,6,7,8 } ustawiamy w przypadkowej kolejności (bez powtórzeń) tworząc liczbę ośmiocyfrową. Jakie jest prawdopodobieństwo otrzymania liczby, w której jednocześnie:
– cyfra 1 stoi na lewo od cyfry 2,
– cyfra 3 stoi na lewo od cyfry 4,
– cyfra 5 stoi na lewo od cyfry 6,
– cyfra 7 stoi na lewo od cyfry 8?
Uwaga, w powyższych warunkach nie zakładamy, że odpowiednie cyfry stoją obok siebie, np. liczba 13275846 spełnia wszystkie powyższe warunki.

Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr (cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo, że w losowo utworzonym kodzie PIN żadna cyfra się nie powtórzy. Wynik podaj w postaci ułamka nieskracalnego.

Dane są zbiory liczb całkowitych: {1,2,3,4 ,5 } i {1,2,3,4 ,5,6,7} . Z każdego z tych zbiorów wybieramy losowo po jednej liczbie. Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie podzielna przez 5.

Ze zbioru liczb {1,2,3,4 ,5,6,7,8} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A , polegającego na wylosowaniu liczb, z których pierwsza jest większa od drugiej o 4 lub 6.

Niech n będzie liczbą naturalną. Ze zbioru liczb {1,2,3 ,...,2n+ 1} losujemy dwie liczby (mogą być równe). Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie większa od 2n + 1 .

W zbiorze Z = {− 2n + 1,− 2n + 3,...,− 3,− 1,0,1,3,...,2n − 3,2n − 1} , gdzie n > 4 jest liczbą naturalną, zmieniono znaki na przeciwne trzem losowo wybranym liczbom. Wiadomo, że prawdopodobieństwo tego, że suma wszystkich liczb w zbiorze nie uległa zmianie wynosi 1-- 161 . Wyznacz n .

*Ukryj

Ze zbioru liczb {0,1,− 1,3 ,− 3 ,5 ,−5 ,...,2n+ 1,− 2n − 1} , gdzie n jest ustaloną liczbą naturalną, większą od 4, losujemy jednocześnie trzy liczby. Niech A oznacza zdarzenie: suma wylosowanych liczb nie ulegnie zmianie, jeżeli w wylosowanych liczbach zmienimy znaki na przeciwne. Wiedząc, że  -1- P (A ) = 133 , oblicz n .

W grze liczbowej Express Lotek losowanych jest pięć spośród liczb 1,2,3 ,...,41,42 . Gracz zawarł jeden zakład na najbliższe losowanie (czyli wytypował w kolekturze Totalizatora Sportowego pięć liczb spośród czterdziestu dwóch). Oblicz ile razy prawdopodobieństwo trafienia ’trójki’ (czyli wytypowania dokładnie 3 liczb spośród tych, które będą wylosowane) jest większe niż prawdopodobieństwo trafienia

  • piątki;
  • czwórki.

Spośród liczb naturalnych trzycyfrowych wybieramy jedną liczbę. Jakie jest prawdopodobieństwo wybrania liczby, która przy dzieleniu przez 11 daje resztę 3.

Ze zbioru Z = { − 1,3,4,6,8,9} losujemy bez zwracania liczby x i y . Oblicz prawdopodobieństwa zdarzeń: A , B, A ∪ B jeśli:
A – suma wylosowanych liczb jest nieparzysta;
B – wylosowane liczby spełniają warunek: 25 < (x − 1)2 + y2 ≤ 100 .

Ze zbioru liczb {1,2,3,4 ,7 ,9,10} losujemy dwie liczby (mogą się powtarzać). Oblicz prawdopodobieństwo, że suma wylosowanych liczb jest parzysta.

Ze zbioru {1,2,3,4 ,5 ,6,7} losujemy liczbę x , a ze zbioru {− 7 ,−6 ,−5 ,−4 ,−3 ,−2 ,−1 } liczbę y . Oblicz prawdopodobieństwo tego, że x + y > 0 .

Ze zbioru liczb 1,2,3,4,5 losujemy kolejno trzy razy po jednej liczbie bez zwracania tworząc liczbę trzycyfrową. Oblicz prawdopodobieństwo zdarzenia A – otrzymana liczba jest mniejsza od 432.

Ze zbioru Z = { 1,2,3,...,2n + 1} , gdzie n ∈ N wylosowano równocześnie dwie liczby. Wyznacz n , tak aby prawdopodobieństwo wylosowania liczb, których suma jest liczbą nieparzystą było większe od 713- .

Ze zbioru {1,2,3,4,5,6,7 } losujemy kolejno, bez zwracania trzy cyfry i tworzymy liczbę trzycyfrową: pierwsza wylosowana cyfra jest cyfrą setek, druga – cyfrą dziesiątek, a trzecia – cyfrą jedności. Oblicz prawdopodobieństwo zdarzenia, że otrzymana liczba ma następującą własność: różnica między największą i najmniejszą cyfrą tej liczby jest nie większa niż 3.

Spośród liczb  1 2 3 9 1 ,2 ,3 ,...,9 wybieramy losowo trzy. Oblicz prawdopodobieństwo, że iloczyn tych liczb jest parzysty.

Z cyfr 0,1,2,3,5,6 tworzymy liczbę czterocyfrową, przy czym cyfry nie mogą się powtarzać. Jakie jest prawdopodobieństwo otrzymania liczby podzielnej przez 25?

Zamek szyfrowy składa się z 5 tarcz. Na każdej z tarcz znajduje się 6 cyfr. Zamek otwiera kombinacja cyfr podana w odpowiedniej kolejności. (istotne są cyfry na tarczach oraz kolejność ustawiania tarcz). Jakie jest prawdopodobieństwo otworzenia zamka przy losowym ustawieniu tarcz?

Strona 1 z 4>>>>