Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Wyznacz współrzędne wierzchołków trójkąta jeżeli środki jego boków mają współrzędne: P = (1,3),Q = (− 5,4),R = (− 6,7) .

Dla jakich wartości parametru α odległość punktu P = (1,2) od prostej y = x+ sin α jest mniejsza lub równa 1√2- .

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (− 2,− 4) oraz B = (− 5,2) . Jedno z jego ramion zawiera się w prostej o równaniu y = x − 2 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

*Ukryj

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (1,− 5) oraz B = (4,1) . Jedno z jego ramion zawiera się w prostej o równaniu y = −x − 4 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

Dany jest punkt M = (2 ,8 ) . Wyznacz równanie takiej prostej k , do której należy punkt M , że na ujemnej półosi Ox i dodatniej półosi Oy układu xOy prosta ta wyznacza odcinki OA i OB , których suma długości jest równa 6. Oblicz obwód trójkąta AOB .

Wyznacz współrzędne punktu P , który dzieli odcinek o końcach A = (29,− 15) i B = (45,13) w stosunku |AP | : |PB | = 1 : 3 .

*Ukryj

Wyznacz współrzędne punktu P , który dzieli odcinek o końcach A = (19,17) i B = (− 9,33) w stosunku |AP | : |PB | = 1 : 3 .

Punkt S = (0 ;0) jest środkiem boku AD równoległoboku ABCD . Wiadomo też, że −→ AB = [4;3] oraz −→ BC = [6;2] . Wyznacz wierzchołki tego równoległoboku.

Wykaż, że prosta l : y = − 2x − 1 jest styczna do okręgu  2 2 (x − 3) + (y + 2) = 5 .

*Ukryj

Sprawdź, czy prosta x − 3y − 1 = 0 jest styczna do okręgu  2 2 (x − 1) + (y + 3 ) = 4 .

Dane są punkty A (1,0),B(− 1,1) . Punkt C należy do okręgu o równaniu x 2 + y2 = 1 . Znajdź współrzędne punktu C , tak aby pole trójkąta ABC było największe. Oblicz to pole.

*Ukryj

Dane są punkty A (−2 ,5),B(3,− 5) . Punkt C należy do okręgu o równaniu (x + 2)2 + y2 = 2 5 . Znajdź współrzędne punktu C , tak aby pole trójkąta ABC było największe. Oblicz to pole.

Wyznacz równanie prostej przechodzącej przez początek układu współrzędnych i przez środek okręgu o równaniu x2 + y2 − 2x + 4y − 5 = 0 .

*Ukryj

Wyznacz równanie prostej przechodzącej przez początek układu współrzędnych i przez środek okręgu o równaniu x2 + y2 + 8x − 2y − 3 = 0 .

Punkty A = (2,0) i B = (4,2) leżą na okręgu o równaniu  2 2 (x − 1) + (y − 3) = 10 . Wyznacz na tym okręgu taki punkt C , aby trójkąt ABC był trójkątem równoramiennym o podstawie AB .

Punkty A = (− 1,− 5), B = (3 ,− 1 ), C = (2,4) są kolejnymi wierzchołkami równoległoboku ABCD . Oblicz pole tego równoległoboku.

*Ukryj

Oblicz pole równoległoboku ABCD o wierzchołkach A = (− 3,− 2) , B = (1,2) , C = (6,1) , D = (2,− 3) .

Ile punktów wspólnych ma prosta MN z okręgiem  2 2 x + y − 2x − 6y = 0 jeśli M = (2009,40 12) oraz N = (− 50,− 106) .

Punkty A = (− 9,− 3) i B = (5,5) są wierzchołkami trójkąta prostokątnego ABC , w którym AB jest przeciwprostokątną. Wyznacz współrzędne wierzchołka C wiedząc, że leży on na osi Ox .

*Ukryj

Punkty A = (2,0) i B = (12,0) są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB . Wierzchołek C leży na prostej o równaniu y = x . Oblicz współrzędne punktu C .

Punkty A = (− 6,0) i B = (20,0) są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB . Wierzchołek C leży na prostej o równaniu y = x . Oblicz współrzędne punktu C .

O ile procent pole koła o promieniu długości 8 jest większe od pola koła wyznaczonego przez okrąg o równaniu x2 + y2 − 6x + 5 = 0 .

Wyznacz odległość punktu (−2 ,3) od prostej o równaniu 3x − 4y + 2 = 0 .

Przekątne deltoidu ABCD przecinają się w punkcie S , który znajduje się w III ćwiartce układu współrzędnych. Wyznacz równanie okręgu opisanego na trójkącie BCD jeżeli okręgi opisane na trójkątach BCS i BSA mają odpowiednio równania x2 + y2 + 16x + 12 = 0 i x 2 + y 2 − 2 0 = 0 .

Wierzchołki trójkąta ABC mają współrzędne: A = (− 6,4),B = (− 2,− 4),C = (3,1) . Napisz równanie okręgu, który jest styczny do prostej AC , a jego środek jest punktem przecięcia się wysokości trójkąta ABC .

Napisz równanie okręgu, którego środek należy do osi Ox , i który przechodzi przez punkty A (2,3) i B (5,2) .

*Ukryj

Napisz równanie okręgu, którego środek leży na prostej y = − 2x , i który przechodzi przez punkty A = (− 4,− 5) i B (− 2,− 1) .

Wierzchołkami trójkąta ABC są punkty A = (−4 ,1),B = (5,− 2),C = (3,6) . Oblicz długość środkowej AD .

Punkty K , L , M są środkami boków BC ,CA i AB trójkąta ABC . Wykaż, że

− → − → −→ → AK + BL + CM = 0.
Strona 1 z 18>>>>