Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

Wielomian  4 3 2 W (x) = x + ax + bx − x+ b przy dzieleniu przez każdy z dwumianów: x + 1 , x − 2 i x + 3 daję tę samą resztę. Wyznacz a i b .

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1),(x + 2),(x − 3 ) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 3 − 2x 2 − 5x+ 6 .

Reszta z dzielenia wielomianu  3 2 x + px − x + q przez trójmian  2 (x + 2) wynosi 1 − x . Wyznacz pierwiastki tego wielomianu.

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1) , (x+ 2) , (x − 3) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = (x − 1 )(x+ 2)(x− 3) .

Reszta z dzielenia wielomianu W (x) przez wielomian  3 2 P (x) = x + 2x − x − 2 jest równa x2 + x + 1 . Wyznacz resztę z dzielenia wielomianu W (x ) przez wielomian V(x ) = x2 − 1 .

Liczba 2 jest miejscem zerowym wielomianu W (x) . Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 2 − 3x + 2 jeśli wiadomo, że w wyniku dzielenia wielomianu W (x ) przez dwumian (x − 1) otrzymujemy resztę 5.

Reszta z dzielenia wielomianu W (x) przez dwumian x − 1 jest równa 1, zaś reszta z dzielenia tego wielomianu przez x − 2 jest równa 4. Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian x 2 − 3x + 2 .

*Ukryj

Wyznacz resztę z dzielenia wielomianu P(x) przez trójmian  2 x − 3x − 2 8 jeśli P (7) = 24 i P (− 4) = − 31 .

Wielomian  4 3 2 W (x) = 6x + 10x + ax − 15x + b jest podzielny przez trójmian P (x) = 3x 2 + 5x − 7 . Wyznacz liczby a i b .

Dla jakich wartości m reszta z dzielenia wielomianu  3 2- 2 W (x) = x − m x + mx − 2 przez dwumian x − 2 jest mniejsza lub równa 6?

Dany jest wielomian  3 2 W (x) = x + x − 5x + 3 .

  • Oblicz resztę z dzielenia tego wielomianu przez dwumian (x + 1) .
  • Oblicz miejsca zerowe tego wielomianu.
  • Rozwiąż nierówność W (x) > (x − 1)2 .

Nie wykonując dzielenia, wyznacz resztę z dzielenia wielomianu W (x) = x5 + 2x4 + 3x + 1 przez P (x) = (x + 2)(x − 1 ) .

Wielomian  5 3 2 W (x) = x − x + px + qx + r jest podzielny przez wielomian R (x) = x 3 + x + 12 . Wyznacz liczby p ,q i r .

Reszta z dzielenia wielomianu W (x) przez trójmian kwadratowy P (x) = x2 + 2x − 8 jest równa R (x) = − 5x + 2 . Wyznacz resztę z dzielenia tego wielomianu przez dwumian (x + 4) .

Dla jakich wartości parametru k reszta z dzielenia wielomianu W (x) = x5 + (k3 + 3k2)x3 − 2(k2 + 2k)x − k przez dwumian x− 1 jest nie większa od (–2)?

Reszta z dzielenia wielomianu  3 2 W (x) = 4x − 5x − 23x + m przez dwumian x + 1 jest równa 20. Oblicz wartość współczynnika m oraz pierwiastki tego wielomianu.

Dla jakich wartości parametru α , wielomian  3 2 W (x ) = x − (2sin 4α)x + 3x − sin 4α− 5 jest podzielny przez dwumian (x− 2) ?

Wyznacz resztę z dzielenia wielomianu  2013 2012 2011 W (x) = x − 2x + 2x − 1 przez wielomian G (x) = x3 − x .

Dla jakich wartości parametru m reszta z dzielenia wielomianu

 17 15 10 2 x − mx + (m − 2)x + 2x+ m − 2

przez dwumian x − 1 jest równa 3?

Wielomian W (x) przy dzieleniu przez dwumiany (x − 2) , (x+ 4) daje reszty odpowiednio równe -3 oraz -51. Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian P(x ) = x3 + 3x2 − 6x − 8 , wiedząc, że liczba -1 jest miejscem zerowym wielomianu W (x ) .

Wielomian  4 3 2 x − (a− b)x + (a+ b)x − 3x jest podzielny przez wielomian x 3 − 4x 2 + 3x . Oblicz a i b .

Strona 1 z 2>>>>