Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Recenzje

Na skróty

Polecamy

UBUNTU
cornersM
Login
Hasło
atom_news Informacje atom_zad Zadania

Linki sponsorowane

cornersR
Wyszukiwanie zadań
Poziom trudności: Poziom:

W szufladzie jest 40 koszulek, wśród których 10% jest zielonych, a pozostałe są niebieskie. Losowo wyciągamy po jednej koszulce i - bez oglądania - odkładamy do pudełka. Ile co najmniej koszulek należy wyciągnąć, aby mieć pewność, że w pudełku będą co najmniej trzy koszulki niebieskie?
A) 20 B) 10 C) 7 D) 3

*Ukryj

W szufladzie jest 35 koszulek, wśród których 20% jest zielonych, a pozostałe są niebieskie. Losowo wyciągamy po jednej koszulce i - bez oglądania - odkładamy do pudełka. Ile co najmniej koszulek należy teraz wyciągnąć, aby mieć pewność, że w pudełku będą co najmniej trzy koszulki niebieskie?
A) 20 B) 10 C) 7 D) 3

W szufladzie jest 50 koszulek, wśród których 30% jest zielonych, a pozostałe są niebieskie. Losowo wyciągamy po jednej koszulce i - bez oglądania - odkładamy do pudełka. Ile co najmniej koszulek należy teraz wyciągnąć, aby mieć pewność, że w pudełku będzie co najmniej pięć koszulek niebieskich?
A) 20 B) 10 C) 7 D) 3

Ze zbioru liczb {1,2,3,4 ,5,6,7,8} wybieramy losowo jedną liczbę. Liczba p jest prawdopodobieństwem wylosowania liczby podzielnej przez 3. Wtedy
A) p < 0,3 B) p = 0,3 C)  1 p = 3 D)  1 p > 3

*Ukryj

Ze zbioru liczb {1,2,3,4 ,5,6,7,8} wybieramy losowo jedną liczbę. Liczba p oznacza prawdopodobieństwo otrzymania liczby podzielnej przez 3. Wtedy
A) p < 0,25 B) p = 0,25 C)  1 p = 3 D)  1 p > 3

Ze zbioru liczb {1,2 ,3 ,4,5,6,7,8,9,10,1 1} wybieramy losowo jedną liczbę. Niech p oznacza prawdopodobieństwo wybrania liczby będącej wielokrotnością liczby 3. Wówczas
A) p < 0,3 B) p = 0,3 C) p = 0 ,4 D) p > 0,4

Ze zbioru liczb {1,2,3,4 ,5,6,7,8,9,10,11 ,1 2,13,14,15} wybieramy losowo jedną liczbę. Niech p oznacza prawdopodobieństwo wybrania liczby będącej wielokrotnością liczby 3. Wówczas
A) p < 0,3 B) p = 0,3 C) p = 0 ,33 D) p > 0,33

Ze zbioru {1,2,3,4,5,6,7 ,8 ,9,10,11,12,1 3,14,15} wybieramy losowo jedną liczbę. Liczba p oznacza prawdopodobieństwo otrzymania liczby podzielnej przez 4. Wówczas
A) p < 1 5 B) p = 1 5 C)  1 p = 4 D)  1 p > 4

Ze zbioru liczb {1,2,3,4 ,5,6,7} losujemy kolejno dwa razy po jednej cyfrze bez zwracania. Zapisując wylosowane cyfry w kolejności losowania, otrzymujemy liczbę dwucyfrową. Prawdopodobieństwo otrzymania liczby większej od 32 jest równe
A) 28 49 B) 29- 49 C) 28 42 D) 29 42

W pewnej loterii fantowej przygotowano dwie urny z losami, przy czym w drugiej urnie było trzy razy więcej losów niż w pierwszej urnie. Prawdopodobieństwo wybrania losu wygrywającego z pierwszej urny jest równe 1 6 , a prawdopodobieństwo wybrania losu wygrywającego z drugiej urny jest równe 1 3 . Przed rozpoczęciem loterii losy z obu urn zmieszano i umieszczono w jednej urnie. Po tej operacji prawdopodobieństwo wybrania losu wygrywającego jest równe
A) 1 6 B) 1 4 C) -5 12 D) -7 24

Z talii 52 kart wylosowano jedną kartę. Jakie jest prawdopodobieństwo, że wylosowano damę jeżeli wiadomo, że wylosowana karta nie jest ani kierem ani królem?
A) -1 13 B) 1- 12 C) -3 35 D) -3 37

Z urny zawierającej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 185 , a prawdopodobieństwo wybrania co najwyżej jednej kuli białej jest równe 14 15 . Wobec tego prawdopodobieństwo wybrania dokładnie jednej kuli białej jest równe
A) 1115 B) 715- C) 115 D) -6 15

*Ukryj

Z szuflady zawierającej piłki w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej piłki czerwonej jest równe 1129 , a prawdopodobieństwo wybrania co najmniej jednej piłki zielonej jest równe 14 19 . Wobec tego prawdopodobieństwo wybrania dokładnie jednej piłki czerwonej jest równe
A) 129 B) 719- C) 159 D) 26 19

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,30} losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest kwadratem liczby całkowitej, jest równe
A) -4 30 B) 5- 30 C) -6 30 D) 10 30

*Ukryj

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,40} losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest kwadratem liczby całkowitej, jest równe
A) -7 40 B) 5- 40 C) -6 40 D) 10 40

Dane są dwie urny z kulami, w każdej jest 5 kul. W pierwszej urnie jest jedna kula biała i 4 kule czarne. W drugiej urnie są 3 kule białe i 2 kule czarne. Rzucamy jeden raz symetryczną sześcienną kostką do gry. Jeśli wypadnie jedno lub dwa oczka, to losujemy jedną kulę z pierwszej urny, natomiast jeśli wypadną co najmniej trzy oczka, to losujemy jedną kulę z drugiej urny. Prawdopodobieństwo wylosowania kuli białej jest równe
A) -1 15 B) 2 5 C) -7 15 D) 3 5

*Ukryj

Dane są dwie urny z kulami, w każdej jest 5 kul. W pierwszej urnie są dwie kule białe i 3 kule czarne. W drugiej urnie są 3 kule białe i 2 kule czarne. Rzucamy jeden raz symetryczną sześcienną kostką do gry. Jeśli wypadnie jedno lub dwa oczka, to losujemy jedną kulę z pierwszej urny, natomiast jeśli wypadną co najmniej trzy oczka, to losujemy jedną kulę z drugiej urny. Prawdopodobieństwo wylosowania kuli białej jest równe
A) -8 15 B) 2 5 C) -7 15 D) 3 5

Dane są dwie urny z kulami, w każdej jest 5 kul. W pierwszej urnie jest jedna kula biała i 4 kule czarne. W drugiej urnie są 3 kule białe i 2 kule czarne. Rzucamy jeden raz symetryczną sześcienną kostką do gry. Jeśli wypadnie jedno lub dwa oczka, to losujemy jedną kulę z pierwszej urny, natomiast jeśli wypadną co najmniej trzy oczka, to losujemy jedną kulę z drugiej urny. Prawdopodobieństwo wylosowania kuli czarnej jest równe
A) -8 15 B) 3 5 C) 14 15 D) 2 5

Dane są dwie urny z kulami, w każdej jest 5 kul. W pierwszej urnie są dwie kule białe i 3 kule czarne. W drugiej urnie są 3 kule białe i 2 kule czarne. Rzucamy jeden raz symetryczną sześcienną kostką do gry. Jeśli wypadnie jedno lub dwa oczka, to losujemy jedną kulę z pierwszej urny, natomiast jeśli wypadną co najmniej trzy oczka, to losujemy jedną kulę z drugiej urny. Prawdopodobieństwo wylosowania kuli czarnej jest równe
A) -8 15 B) 3 5 C) -7 15 D) 2 5

Na loterii jest 10 losów, z których 4 są wygrywające. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że nie wygramy nagrody jest równe
A) 5 6 B) 2 3 C) 1 6 D) 3 5

*Ukryj

Na loterii jest 12 losów, z których 8 jest przegrywających. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że wygramy nagrodę jest równe
A) 1 3 B) 2 3 C) 3 4 D) 1 6

Na loterii jest 14 losów, z których 6 jest wygrywających. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że nie wygramy nagrody jest równe
A) 3 7 B) 4 7 C) 7 8 D) 3 4

Na loterii jest 20 losów, z których 8 jest wygrywających. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że nie wygramy nagrody jest równe
A) 5 6 B) 3 5 C) 1 6 D) 2 3

W pewnej klasie stosunek liczby dziewcząt do liczby chłopców jest równy 4:5. Losujemy jedną osobę z tej klasy. Prawdopodobieństwo tego, że będzie to dziewczyna, jest równe
A) 4 5 B) 4 9 C) 1 4 D) 1 9

Pewne przedsiębiorstwo postanowiło przyznać każdemu pracownikowi losowy 5-cyfrowy identyfikator, przy czym ustalono, że w identyfikatorze nie może występować cyfra 0. Prawdopodobieństwo p otrzymania identyfikatora, w którym każde dwie cyfry są różne spełnia warunek
A) p > 0,25 B) p < 0,15 C) p = 0 ,15 D) p = 0,24

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy
A) 0 ≤ p < 0,2 B) 0 ,2 ≤ p ≤ 0,3 5 C) 0,35 < p ≤ 0,5 D) 0,5 < p ≤ 1

*Ukryj

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie jednego orła w tych trzech rzutach. Wtedy
A) 0 ≤ p < 0,25 B) 0,25 ≤ p ≤ 0,4 C) 0,4 < p ≤ 0,5 D) p > 0,5

Ze zbioru {1,2,3,4,5,6,7,8 ,9,10,11} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe
A) 141 B) 511- C) 161 D) -9 22

*Ukryj

Ze zbioru {1,2,3,4,5,6 ,7,8,9,10,11,12 ,13} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe
A) 143 B) 513- C) 163 D) -5 26

Ze zbioru liczb {1 ,2,3,4,5,6,7,8,9,10 } losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczby pierwszej jest równe
A) 0,5 B) 0,6 C) 0,4 D) 0,8

Ze zbioru liczb {1 ,2,3,4,5,6,7,8,9,10 } losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczby podzielnej przez 3 lub 4 jest równe
A) 0,5 B) 0,6 C) 0,4 D) 0,8

Ze zbioru liczb {1 ,2,3,4,5,6,7,8,9,10 } losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczby parzystej jest równe
A) 0,5 B) 0,6 C) 0,4 D) 0,8

Ze zbioru {0,1,2,...,15} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe
A) 176 B) 38 C) 165 D) -7 15

Prawdopodobieństwo zdarzenia A jest równe 1 3 , a prawdopodobieństwo sumy zdarzeń A i B jest równe 23 . Wobec tego prawdopodobieństwo zdarzenia B ∖A jest równe
A) 1 3 B) 2 3 C) 2 9 D) 4 9

*Ukryj

Prawdopodobieństwo zdarzenia B jest równe 1 6 , a prawdopodobieństwo sumy zdarzeń A i B jest równe 13 . Wobec tego prawdopodobieństwo zdarzenia A ∖ B jest równe
A) 1 3 B) 2 3 C) 1 6 D) 5 6

Jeżeli A ,B ⊆ Ω oraz P (A ) = 0,4 i P(A ∩ B) = 0 ,4 to prawdopodobieństwo P (A ∖ B) jest równe
A) 0,6 B) 0,4 C) 1 D) 0

W każdym z czterech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech p oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z czterech wylosowanych kul będą niebieskie. Wtedy
A)  3 p = 8 B)  3- p = 16 C) p = 12 D) p = 14

Ze zbioru liczb dwucyfrowych losujemy jedną liczbę. Jakie jest prawdopodobieństwo, że iloczyn cyfr wylosowanej liczby jest dodatnią liczbą złożoną?

Ze zbioru dwucyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Prawdopodobieństwo otrzymania liczby podzielnej przez 30 jest równe
A) -1 90 B) 2- 90 C) -3 90 D) 10 90

*Ukryj

Ze zbioru dwucyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Prawdopodobieństwo otrzymania liczby podzielnej przez 15 jest równe
A) -3 30 B) 2- 30 C) -6 30 D) -7 90

Ze zbioru liczb naturalnych dwucyfrowych nie mniejszych od 50 losujemy jedną liczbę. Jakie jest prawdopodobieństwo, że wylosowana liczba będzie podzielna przez 5?
A) 10 50 B) 10- 49 C) -9 49 D) 11 50

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo dwukrotnego otrzymania liczby oczek różnej od 5 jest równe
A) 16 B) 518 C) 3356 D) 25 36

Ze zbioru dzielników naturalnych liczby 8 losujemy dwa razy po jednej liczbie (otrzymane liczby mogą się powtarzać). Prawdopodobieństwo, że iloczyn wybranych liczb jest dzielnikiem liczby 4 jest równe
A) 1 4 B) 5- 16 C) 3 8 D) 1 8

Z urny zawierającej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 185 , a prawdopodobieństwo wybrania co najwyżej jednej kuli białej jest równe 14 15 . Wobec tego prawdopodobieństwo wybrania dokładnie dwóch kul białych jest równe
A) 1115 B) 715- C) 115 D) -6 15

*Ukryj

Z urny zawierającej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli niebieskiej jest równe 1147 , a prawdopodobieństwo wybrania co najwyżej jednej kuli niebieskiej jest równe -8 17 . Wobec tego prawdopodobieństwo wybrania dokładnie dwóch kul niebieskich jest równe
A) 11 17 B) 7 17- C)  1 17 D) -9 17

Z pudełka zwierającego losy wygrywające i przegrywające wybieramy dwa losy. Prawdopodobieństwo wylosowania co najmniej jednego losu wygrywającego jest równe 513 , a prawdopodobieństwo wybrania co najwyżej jednego losu wygrywającego jest równe -9 13 . Wobec tego prawdopodobieństwo wybrania dokładnie dwóch losów wygrywających jest równe
A)  4 13 B) 1 13- C) 12 13 D) 11 13

Strona 1 z 4>>>>