Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna/Zadania na ekstremum

Wyszukiwanie zadań

Rozpatrujemy wszystkie prostokąty ABCD , których wierzchołki A i B leżą na wykresie funkcji f określonej wzorem f (x) = 271x4 dla x ⁄= 0 . Punkty C i D leżą na wykresie funkcji g określonej wzorem g(x) = − 2x4 − 7 5 9 i są położone symetrycznie względem osi Oy (zobacz rysunek). Oblicz współrzędne wierzchołka A , dla którego pole prostokąta ABCD jest najmniejsze. Oblicz to najmniejsze pole.


PIC


Na prostej l : x + y − 6 = 0 wyznacz taki punkt C , aby długość łamanej ACB , gdzie A (1,3) , B (2,2) , była najmniejsza. Uzasadnij swoje rozumowanie.

Rozważamy prostokąty, których dwa wierzchołki leżą na odcinku łączącym punkty wspólne osi Ox i paraboli o równaniu y = x2 − 6x + 5 , a dwa należą do tej paraboli. Wyznacz współrzędne wierzchołków tego prostokąta, który ma największy obwód.

Na wykresie funkcji  1 4 3 2 y = 4x − x − 5x + 22x + 50 znajdź współrzędne punktu A , którego odległość od prostej o równaniu y = −2x − 22 jest najmniejsza.

Ukryj Podobne zadania

Na wykresie funkcji  1 4 3 2 y = 4x + x − 5x − 22x + 50 znajdź współrzędne punktu A , którego odległość od prostej o równaniu y = 2x− 22 jest najmniejsza.

W układzie współrzędnych dane są punkty A = (− 3,− 1) i B = (4,6 ) . Na wykresie funkcji  √ -- y = 3 x − 1 znajdź taki punkt C , dla którego pole trójkąta ABC jest najmniejsze.

Na obrzeżach miasta znajduje się jezioro, na którym postanowiono stworzyć tor regatowy. Na podstawie dostępnych map wymodelowano w pewnej skali kształt linii brzegowej jeziora w kartezjańskim układzie współrzędnych (x,y) za pomocą fragmentów wykresów funkcji f oraz g (zobacz rysunek).


PIC


Funkcje f oraz g są określone wzorami f (x) = x2 oraz  ( )2 g(x) = − 1 x− 1 + 4 2 2 . Początek toru postanowiono zlokalizować na brzegu jeziora w miejscu, któremu odpowiada w układzie współrzędnych punkt P = (−1 ,1) . Koniec toru regatowego należy umieścić na linii brzegowej. Oblicz współrzędne punktu K , w którym należy zlokalizować koniec toru, aby długość toru (tj. odległość końca K toru od początku P ) była możliwie największa. Oblicz długość najdłuższego toru.

Przy rozwiązywaniu zadania możesz skorzystać z tego, że odległość dowolnego punktu R leżącego na wykresie funkcji g od punktu P wyraża się wzorem

 ∘ -------------------------------- 1 1 13 39 593 |PR | = -x 4 − -x3 − ---x2 + ---x+ ----, 4 2 8 8 6 4

gdzie x jest pierwszą współrzędną punktu R .

Ukryj Podobne zadania

Na obrzeżach miasta znajduje się jezioro, na którym postanowiono stworzyć tor regatowy. Na podstawie dostępnych map wymodelowano w pewnej skali kształt linii brzegowej jeziora w kartezjańskim układzie współrzędnych (x,y) za pomocą fragmentów wykresów funkcji f oraz g (zobacz rysunek).


PIC


Funkcje f oraz g są określone wzorami f(x) = − 12(x− 1)2 + 72 oraz g (x ) = 1 (x− 5)2 − 25 4 2 16 . Początek toru postanowiono zlokalizować na brzegu w miejscu, któremu odpowiada w układzie współrzędnych punkt P = (4,− 1) . Koniec toru regatowego należy umieścić na linii brzegowej. Oblicz współrzędne punktu K , w którym należy zlokalizować koniec toru, aby długość toru (tj. odległość końca K toru od początku P ) była możliwie największa. Oblicz długość najdłuższego toru.

Przy rozwiązywaniu zadania możesz skorzystać z tego, że odległość dowolnego punktu R leżącego na wykresie funkcji f od punktu P wyraża się wzorem

 ∘ --------------------- 1 |P R| = -x 4 − x 3 − 2x 2 + 3 2, 4

gdzie x jest pierwszą współrzędną punktu R .

W układzie współrzędnych dany jest punkt A = (9,4) . Na okręgu o równaniu (x − 1)2 + (y − 2)2 = 1 7 wyznacz współrzędne punktu B , dla którego odległość |AB | jest największa.

Wyznacz taki punkt A na prostej 2x + y − 1 = 0 , by suma kwadratów jego odległości od osi układu była najmniejsza.

Dane są punkty A = (1,3),B = (−4 ,−2 ) . Wyznacz taki punkt C = (x ,y) , gdzie x ∈ (−1 ,2) leżący na paraboli o równaniu y = x2 , aby pole trójkąta ABC było największe.

Wyznacz wartość parametru m , dla której pole koła stycznego do prostych zawierających boki AB i CD równoległoboku ABCD o wierzchołkach A = (5,− 4) , B = (2,− 8) , C = (m 3 + 15m ,m 4 + 10m 2) jest najmniejsze możliwe. Oblicz to pole.

Dane są punkty A = (2,3) i B = (5,4) . Na prostej o równaniu y = 5 wyznacz punkt C tak, aby łamana ACB miała jak najmniejszą długość. Odpowiedź uzasadnij.

Wyznacz wszystkie wartości parametru m ∈ R , dla których równanie

 2 2 2 x + y + 6mx − 4y + 1 0m − 4m + 2 = 0

opisuje okrąg. Jaka jest największa możliwa długość tego okręgu?

W parku krajobrazowym znajduje się zbiornik wodny, którego dwa brzegi postanowiono połączyć pomostem. Na podstawie dostępnych map wymodelowano w pewnej skali kształt linii brzegowej zbiornika w kartezjańskim układzie współrzędnych (x,y ) za pomocą fragmentów wykresów funkcji f oraz g , które odpowiadają przeciwległym brzegom zbiornika (zobacz rysunek).


PIC


Funkcje f oraz g są określone wzorami  ( )2 f(x ) = 12 x− 32 − 3 oraz g (x) = 1 (x− 1)2 + 1 4 . Jeden z końców pomostu postanowiono zlokalizować na brzegu opisanym funkcją g w punkcie o współrzędnych P = (3,2) . Koniec pomostu należy umieścić na brzegu opisanym funkcją f . Oblicz współrzędne punktu K , w którym należy zlokalizować koniec pomostu, aby jego długość (tj. odległość końca K pomostu od początku P ) była możliwie najmniejsza. Oblicz długość najkrótszego pomostu.

Przy rozwiązywaniu zadania możesz skorzystać z tego, że odległość dowolnego punktu R leżącego na wykresie funkcji f od punktu P wyraża się wzorem

 ∘ -------------------------------- 1 3 5 45 1537 |PR | = 4x 4 − 2x3 − 8-x2 + -8 x + -64--,

gdzie x jest pierwszą współrzędną punktu R .

Na rysunku poniżej przedstawiono fragment wykresu funkcji  9x−45 f (x) = x−6 określonej dla x ∈ (− ∞ ,6) . Wykres ten przecina osie Ox i Oy odpowiednio w punktach B i D , a punkt A jest początkiem układu współrzędnych. Rozpatrujemy wszystkie czworokąty ABCD , w których punkt C leży na wykresie funkcji y = f(x) pomiędzy punktami B i D .


PIC


Oblicz współrzędne wierzchołka C tego z rozpatrywanych czworokątów, którego pole jest największe.

W układzie współrzędnych rozważmy wszystkie punkty P postaci:  ( ) P = 1m + 5,m 2 2 , gdzie m ∈ ⟨− 1,7⟩ . Oblicz najmniejszą i największą wartość  2 |PQ | , gdzie  ( 55 ) Q = 2-,0 .

Na krzywej xy = 6 obrano punkty A (2,3) i B (6 ,1) . Znajdź na tej krzywej taki punkt C o ujemnej odciętej, aby pole trójkąta ABC było najmniejsze.

Dane są punkty A = (− 1,3) i B = (3 ,6) . Funkcja f przyporządkowuje dowolnemu punktowi należącemu do odcinka AB jego odległość od punktu P = (1,1) . Wyznacz zbiór wartości tej funkcji i jej wartość najmniejszą.

Rozpatrujemy wszystkie trójkąty ABC , których wierzchołki A i B leżą na wykresie funkcji f określonej wzorem f (x) = x94 dla x ⁄= 0 . Punkt C ma współrzędne ( ) 1 0,− 3 , a punkty A i B , są położone symetrycznie względem osi Oy (zobacz rysunek). Oblicz współrzędne wierzchołków A i B , dla których pole trójkąta ABC jest najmniejsze. Oblicz to najmniejsze pole.


PIC


Wykres funkcji kwadratowej  2 2 f(x) = (1 − m )x − mx + m przecina oś Ox w punktach A i B , które leżą po dwóch różnych stronach osi Oy . Wyznacz tę wartość parametru m , dla której iloczyn odległości punktów A i B od początku układu współrzędnych jest najmniejszy możliwy. Dla wyznaczonej wartości m oblicz sumę odległości punktów A i B od początku układu współrzędnych.

Parabola o równaniu  1 2 y = 2 − 2 x przecina oś Ox układu współrzędnych w punktach A = (− 2,0 ) i B = (2,0) . Rozpatrujemy wszystkie trapezy równoramienne ABCD , których dłuższą podstawą jest odcinek AB , a końce C i D krótszej podstawy leżą na paraboli (zobacz rysunek).


PIC


Wyznacz pole trapezu ABCD w zależności od pierwszej współrzędnej wierzchołka C . Oblicz współrzędne wierzchołka C tego z rozpatrywanych trapezów, którego pole jest największe.

Ukryj Podobne zadania

Rozpatrujemy wszystkie prostokąty ABCD , których dwa wierzchołki A i B leżą na odcinku o końcach (0,0) i (4,0) , a dwa pozostałe wierzchołki C i D leżą na paraboli o równaniu y = 2x − 12 x2 (zobacz rysunek).


PIC


Oblicz obwód tego z rozpatrywanych prostokątów, którego pole jest największe.

Strona 2 z 3
spinner